ENHANCING SOIL HEALTH FOR RICE GROWTH

ISWANDI Anas¹, N. K. Megasari¹, T. Hutabarat², M. Bakrie³, M.P. Utami¹ and Norman Uphoff⁴

¹Laboratory of Soil Biotechnology, Bogor Agricultural University (IPB), Jl. Meranti Bogor 16680, INDONESIA, iswandi742@yahoo.com or iswandianas@ipb.ac.id; Phone: +62-81310750540
²Ministry of Agriculture, Republic of Indonesia; ³Ternate Regional Ministry of Agriculture Office;
⁴SRI-Rice, Cornell University, Ithaca, NY, USA 14853

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
CHILDREN ARE INTRODUCED TO AGRICULTURE

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
SRI in Indonesia 2012

- 29 PROVINCES (2012)
- 196 DISTRICTS
- >80,000 HA, PROJECT (?) MOA
- 4.9 TONS/HA ---- 7.25 TONS/HA

--

- LARGER AREA: NGO FARMERS
- CSR COMPANIES: GARUDA, SAMPURNA, OIL COMPANY
Soil health?

- Continued capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain biological productivity, to promote the quality of soil, water and air environment, and to maintain plant, animal and human health
Why rice is soo important in ASIA?
It is the staple food for more than half of the world's population
➢ A billion people depend for their livelihoods on rice cultivation
➢ Most rice is cultivated according to these standard methods:
 - flooded conditions,
 - transplanting of older rice seedling
 - narrow distance between plants
 - using mostly inorganic NPK fertilizers.

FLOODED CONDITIONS: HEALTHY SOIL CONDITIONS?

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
SRI practices enhance soil health for rice to grow better! Why?

• Moist soil conditions, not continuously flooded, so mostly aerobic soil conditions support they grow of beneficial soil microbes
• Weeding by using rotary weeder, aerates the soil as it controls weeds
• Application of good quality of organic fertilizers is recommended, to ‘feed the soil’ so that the soil can then feed the plant
• All these practicers enhance soil health for rice to grow
• Why?

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
FLOODED CONDITIONS: ARE THEY REALLY HEALTHY FOR RICE TO GROW?

• LESS O_2 IN THE SOIL, WHICH MAKES IT DIFFICULT FOR ROOTS TO GET THE NEEDED O_2
• - REDOX POTENTIAL IS LOW - 200 mVolt
• - TOXIC ELEMENTS BUILD UP such as Fe^{2+}
• - UNFAVOURABLE CONDITIONS FOR MOST BENEFICIAL (MICRO) BIOTA
• IS THIS FAVOURABLE FOR RICE PLANT TO GROW?

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
RICE CULTIVATION

CONVENTIONAL

- FLOODED SOIL CONDITION
- MORE SEED: 40 KG/HA, SYNTHETIC FERT @ 500-600 KG/HA, PESTICIDE
- 6-8 SEEDLINGS/HILL
- SEEDLINGS 30 DAYS OLD
- NARROW PLANTING DISTANCE: 20 X 20 CM

S.R.I.

- MOIST SOIL, NOT ALWAYS FLOODED
- LESS SEEDS, EFFICIENT FERTILIZER
- YOUNG SEEDLINGS 8-10 DAYS OLD, WITH ATTENTION TO ROOTS
- WIDER PLANTING DISTANCE: 25 X 25 CM OR 30 X 30 CM

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Minggu Setelah Tanam

SOIL Eh

SOIL Eh

Methanogens active

FORMATION OF CH₄ -150 mVolt

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Eh: flooded vs SRI

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
‘WEEDING Soil Aeration is inducing a better growth condition

GET RID OF WEEDS

SOIL AERATION

STIMULATE ROOT GROWTH

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Stimulate microbial activity and populations

A review of studies on SRI effects on beneficial organisms in rice soil rhizospheres

Iswandi Anas · O. P. Rupela · T. M. Thiyagarajan · Norman Uphoff

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bacteria</td>
<td>312%</td>
<td>ND</td>
<td>65%</td>
</tr>
<tr>
<td>Total diazotrophs b</td>
<td>61%</td>
<td>6.4%**</td>
<td>NM</td>
</tr>
<tr>
<td>Azospirillum b</td>
<td>32%</td>
<td>NM</td>
<td>211%</td>
</tr>
<tr>
<td>Azotobacter b</td>
<td>36%</td>
<td>NM</td>
<td>94%</td>
</tr>
<tr>
<td>P-solubilizing microbes</td>
<td>53%</td>
<td>3.6%**</td>
<td>78%</td>
</tr>
<tr>
<td>Dehydrogenase (µg TPF g⁻¹ 24 h⁻¹)</td>
<td>140%</td>
<td>22.5%**</td>
<td>125%</td>
</tr>
<tr>
<td>Microbial biomass N (mg kg⁻¹ soil)</td>
<td>NM</td>
<td>20%**</td>
<td>NM</td>
</tr>
</tbody>
</table>

ND no difference, NM not measured

a These trials included wet-season results when water control was incomplete and therefore aerobic soil conditions were difficult to maintain

b N₂-fixing bacteria

** Significant at 0.05 level of confidence
Total microbes, numbers of beneficial soil microbes under Conventional and S.R.I Rice Cultivation Methods at Nagrak, Sukabumi (Iswandi et al 2008)

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total Microbes* (x10^5)</th>
<th>Azotobacter* (x10^3)</th>
<th>Azospirillum* (x10^3)</th>
<th>PSM* (x10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional (T0)</td>
<td>2.3a</td>
<td>1.9a</td>
<td>0.9a</td>
<td>3.3a</td>
</tr>
<tr>
<td>In-Organic S.R.I (T1)</td>
<td>2.7a</td>
<td>2.2a</td>
<td>1.7ab</td>
<td>4.0a</td>
</tr>
<tr>
<td>Organic-S.R.I (T2)</td>
<td>3.8b</td>
<td>3.7b</td>
<td>2.8bc</td>
<td>5.9b</td>
</tr>
<tr>
<td>In-organic S.R.I + BF (T3)</td>
<td>4.8c</td>
<td>4.4b</td>
<td>3.3c</td>
<td>6.4b</td>
</tr>
</tbody>
</table>

*CFU/g soil
PSM = Phosphate Solubilizing Microbes

Total microbes and number of beneficial soil microbes under conventional and SRI rice cultivation methods at Tanjung Sari, Bogor (Iswandi et al 2009)

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Population of soil fauna (numbers/m²) under conventional (T0) and SRI rice cultivation (T1, T2 and T3) (Iswandi et al. 2009)

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
AERENCHYMA? ARE THESE NEEDED?

Conventional Management
(note hole in the middle)

Inorganic S.R.I.
(more solid tissue)

Organic S.R.I.
(most solid tissue)

Photos by Iswandi Anas and Fakhrur Razie, 2009

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Root length (cm)
(Iswandi et al. 2009)

<table>
<thead>
<tr>
<th>Location</th>
<th>Method</th>
<th>Weeks after transplanting (WAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Sukabumi</td>
<td>Conventional</td>
<td>21.20</td>
</tr>
<tr>
<td></td>
<td>Inorganic S.R.I</td>
<td>42.50</td>
</tr>
<tr>
<td></td>
<td>Organic S.R.I</td>
<td>24.40</td>
</tr>
<tr>
<td>Depok</td>
<td>Conventional</td>
<td>16.57</td>
</tr>
<tr>
<td></td>
<td>Inorganic S.R.I</td>
<td>33.63</td>
</tr>
<tr>
<td></td>
<td>Organic S.R.I</td>
<td>20.20</td>
</tr>
<tr>
<td>Bogor</td>
<td>Conventional</td>
<td>25.67</td>
</tr>
<tr>
<td></td>
<td>Inorganic S.R.I</td>
<td>36.00</td>
</tr>
<tr>
<td></td>
<td>Organic S.R.I</td>
<td>25.50</td>
</tr>
<tr>
<td>Tanjung Sari</td>
<td>Conventional</td>
<td>22.30 a</td>
</tr>
<tr>
<td></td>
<td>Inorganic S.R.I</td>
<td>75.00 b</td>
</tr>
<tr>
<td></td>
<td>Organic S.R.I</td>
<td>70.43 b</td>
</tr>
</tbody>
</table>

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
<table>
<thead>
<tr>
<th>Location</th>
<th>Methods</th>
<th>Weeks after transplanting (WAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Sukabumi</td>
<td>Conventional</td>
<td>8.89</td>
</tr>
<tr>
<td></td>
<td>Inorganic S.R.I</td>
<td>15.77</td>
</tr>
<tr>
<td></td>
<td>Organic S.R.I</td>
<td>6.70</td>
</tr>
<tr>
<td>Depok</td>
<td>Conventional</td>
<td>1.11 a</td>
</tr>
<tr>
<td></td>
<td>Inorganic S.R.I</td>
<td>2.41 c</td>
</tr>
<tr>
<td></td>
<td>Organic S.R.I</td>
<td>1.70 b</td>
</tr>
<tr>
<td>Bogor</td>
<td>Conventional</td>
<td>16.49</td>
</tr>
<tr>
<td></td>
<td>Inorganic S.R.I</td>
<td>5.69</td>
</tr>
<tr>
<td></td>
<td>Organic S.R.I</td>
<td>2.94</td>
</tr>
<tr>
<td>Tanjung Sari</td>
<td>Conventional</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>Inorganic S.R.I</td>
<td>11.92</td>
</tr>
<tr>
<td></td>
<td>Organic S.R.I</td>
<td>5.99</td>
</tr>
</tbody>
</table>

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Other advantages of unflooded conditions

- Reduce methane emissions from rice field
- Reduce toxicity such as Fe toxicity

- It remains to be evaluated conclusively whether there is offsetting increase of \(\text{N}_2\text{O} \) in response to SRI management; so far, studies have shown little or no increase

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Methane Fluxes (Hutabarat, 2010)

Fluxes CH₄ (mg CH₄-C m⁻² jam⁻¹)

Minggu Setelah Tanam

CONVENTIONAL

SRI

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Table 14. Effects of Slag (AgriPower and Minekal) on C-CH₄ emission

<table>
<thead>
<tr>
<th>Treatment</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>4.363</td>
<td>7.848</td>
<td>4.945</td>
<td>7.299</td>
<td>3.383</td>
<td>0.462</td>
<td>1.253</td>
</tr>
</tbody>
</table>

*T1 = 100% NPK, T2 = 100% NPK + 500 kg ha⁻¹ AgriPower, T3 = 100% NPK + 1000 kg ha⁻¹ Minekal, T4 = 100% NPK + Mid-Season Drainage, T5 = 50% NPK + 500 kg ha⁻¹ AgriPower, T6 = 100% NPK as farmer level + 1,000 kg Minekal (Particle Size =3.3 mm) + SRI, T7 = 100% NPK as farmer level + SRI.

![Graph showing emission C-CH₄ for CONVENTIONAL and SRI treatments](image-url)
Fe-toxicity In ACID SULFATE SOILS

Keracunan Fe

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
CONVENTIONAL SRI

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
CONVENTIONAL

SRI

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
YIELD INCREASE
63% average in the studies reported below

<table>
<thead>
<tr>
<th></th>
<th>CONVENTIONAL (TON/HA)</th>
<th>SRI (TON/HA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUGIYANTA (2008)</td>
<td>5.0</td>
<td>7.5</td>
</tr>
<tr>
<td>HERODIAN ET AL. (2008)</td>
<td>5.5</td>
<td>8.9</td>
</tr>
<tr>
<td>ISWANDI ET AL. (2008)</td>
<td>4.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
SRI – MOA PROGRAM

- 29 PROVINCES (2012)
- 196 DISTRICTS
- >80,000 HA
- LARGER AREA: NGO FARMERS

<table>
<thead>
<tr>
<th>Year</th>
<th>Area (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1,100</td>
</tr>
<tr>
<td>2008</td>
<td>1,320</td>
</tr>
<tr>
<td>2009</td>
<td>1,840</td>
</tr>
<tr>
<td>2010</td>
<td>1,240</td>
</tr>
<tr>
<td>2011</td>
<td>1,140</td>
</tr>
<tr>
<td>2012</td>
<td>60,000</td>
</tr>
</tbody>
</table>

SRI AVERAGE YIELD 7.25 TONS/HA
NATIONAL AVERAGE YIELD 4.90 TONS/HA
AVERAGE INCREASE OF 48%

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
S.R.I NEEDS MORE STUDY:

AGRONOMY
SOIL AND SOIL BIOLOGY
MANAGEMENT
ENVIRONMENTAL IMPACTS
PEST AND DISEASES
WEED SCIENCE: WEEDERS, ETC.
POST-HARVEST
NUTRITIONAL VALUES
SOCIAL-ECONOMY ASPECTS
FARMER INCOMES
CULTURE
GENDER

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
PROF DR ISWANDI ANAS KULIAH UMUM DIES NATALIES UNB 30 JULI 2011

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
IPM-SRI WORKSHOP IN UKM MALAYSIA 12-13 SEPTEMBER 2012 ORGINIZED BY SRI-MAS ATTENDED BY 202 PARTICIPANTS

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012
Presidential Candidate for 2014-2019 Prabowo Subianto

Presented at J-SRI Meeting at University of Tokyo, Japan, 27 September 2012