Colloid Facilitated Transport of Radioactive Cesium in a Fukushima Soil.

東京大学

Taku Nishimura Department of Biogical and Environmental Engineering Graduate School of Agricultural and Life Sciences The University of Tokyo

Nov. 04, 2013

Why we need to consider colloids in Cs transport?

- Chemically, Cs is less hydrated and thus prefer to bound with soil particles.
- Transport of ionic Cs is very slow.
- Alternative process may be considered
 - inorganic colloids facilitated
 - organic colloids facilitated
- Migration of soil colloids in a Fukushima soil was limited (Mizoguchi, 2013)

Use radioactive Cs as a tracer to evaluate soil loss. A rolling hill in northern Japan (Hokkaido).

Kashiwagi and Sakuma (1995)

Source of radioactive Cs was nuclear experiments in atmosphere during 1960's.

Large K_d of radio-active Cs in Japanese soils

Fig. 2 Correlation between clay content and K_d ($R_c = 0.55, p < 0.005$).

4

K_d and retardation factor, R $R = 1 + \frac{\rho_d}{\theta} K_d$

From Soil Physics 6th ed. by Jury and Horton

Upslope with litter layer. No soil loss.

Foot of slope without surface litter

Radioactive Cs Bq/kg

Suspension derived from the Myojin litter

What caused greater movement of the Cs

Particle size distribution of suspension passed 0.45 μ m-filter

Suspension A

5cm settlement for 16hrs Centrifuge (10000rpm,1hr) Centrifuge (10000rpm,1hr)

 $0.2\,\mu$ m filtered

Suspension B

Radio. Cs 1189Bq/kg sediment: 1189Bq/kg supernatant: ND

ND

After (H₂O₂ +Heat) treatment on Suspension A

5cm settlement for 16hrs Centrifuge (10000rpm,1hr) Centrifuge (10000rpm,1hr)

 $0.2\,\mu$ m filtered

Radio. Cs 1056Bq/kg sediment: 983Bq/kg supernatant: 73

67

 $(1 \ \mu \text{ m})$ - $0.2 \ \mu \text{ m}$ $(0.08 < d < 1 \ \mu \text{ m})$ $0.2 \ \mu \text{ m}$ $(0.08 < d < 0.7 \ \mu \text{ m})$

suspended particle size

suspended particle size $(1 \ \mu \text{ m})$ - $1.2 \ \mu \text{ m}$ $(0.7 \le d \le 10 \ \mu \text{ m})$ ND

(No particle of greater than 1nm)

Can ionic Cs remain after H_2O_2 treatment?

Column experiment on transport of Cs with organic colloids

- Non-Cs polluted Paddy soil (30-50 cm, Sasu, litate, Fukushima)
 - → Passed through 2 mm mesh screen

- 1. Percolation of non-Cs solution
- 2. Displace to Cs contained suspension
- After the end of percolation soil column was separated and suffered to Cs analysis.

Observation of effluent from bottom of the column

Visual results agreed radioactive Cs in the effluent

Radioactive Cs in soil column

Thank you for attention

Acknowledge: Meiji University Recovery Support project, JSPS (#24380130)

