Real-time monitoring of soil information in agricultural fields in Asia using Fieldserver

Masaru Mizoguchi1* Shoichi Mitsuishi1 Tetsu Ito1 Kazuo Øki1 Seishi Ninomiya2 Masayuki Hirafuji2 Tokihiro Fukatsu2 Takuji Kiura2 Kei Tanaka2 Hitoshi Toritani3 Hiromasa Hamada4 Kiyoshi Honda5

1st Global workshop on High Resolution Digital Soil Sensing and Mapping
February 5-8, 2008, Sydney-Australia

What is Fieldserver?
- To see is to believe -

- New technologies developed by NARO
 – National Agriculture and Food Research Organization
- An on-site field monitoring system
 – that collects data on crop, climate and soils in agricultural fields
 – and sends the data
 – along with high-resolution digital photos
 – to a laboratory via the Internet
- Each FS communicates through a Wi-Fi network
Soil information system by Fieldserver

We use ECH_2O as a standard soil moisture sensor
Soil sensor

• ECH₂O soil moisture sensors measure
 – volumetric water content accurately and economically
 – the dielectric permittivity of the soil

• Benefits include:
 – TDR-level performance at a fraction of the cost
 – Very low power requirement
 – Easy installation at any depth and orientation

http://www.decagon.com/ECH2O/

Experimental site

• in a rain-fed field in Northeast Thailand
 – Soil moisture distribution changes dynamically according to land use
Monitoring data

- Meteorological data
 - air temperature
 - humidity
 - radiation
 - wind speed
 - precipitation

- Soil data at 4, 8, 16, 32 cm
 - soil moisture content
 - ground temperature
 - electrical conductivity

- Image data of the site

Diagram of real-time soil information monitoring system

- Soil data flow
 - Soil – sensor – (data logger) – Fieldserver –
 - Router – Satellite – AIT – NARO – UT
Data storage (AIT – NARO – UT)

Real-time monitoring data sent from a rain-fed field

Meteorological data are obtained as a xml-table and graphs

An example of soil monitoring data

- Precipitation
- Accumulated precipitation
- Soil temperature
- Soil moisture
- Water logging

To see is to believe!
Other sites

- SRI site in Bogor, Indonesia
- Spinach field in Chiang Mai, Thailand
- Cabbage field in Tsumagoi, Japan
- Glacial lake in Himalaya, Nepal

Soil moisture in Cabbage field changes according to rain and vegetation

To see is to believe!
Future of Fieldserver

under National project
Application of agro-informatics to management of safe agricultural production

Societal Benefits
- Low-cost, high-quality and safe agricultural production
- Information based on knowledge from scientific data and models
- Prediction of the best cultivation day
- Vegetation of cabbage

Data Integration and Fusion System
- Tools for data collection
- Link to models
- Link to agricultural information

Global observation data for agricultural production
- Climate prediction model
- Vegetation data by satellite
- Real-time observation data in agricultural field
- History of agricultural crop management
- Meteorological data

Agricultural production supporting tool considering propagating information (1997-2000)

Conclusions - Fieldserver -
- is a new technology for spatial measurement of agricultural field
- has a great potential for soil Information monitoring
- waits for the development of powerful and useful sensors:
 - ECHO-TE (Soil moisture, Soil temperature, EC)
 - Nitro-sensors (NH₄, NO₃, NO₂, etc)?
 - GHG-sensors (CH₄, N₂O, etc)?
- will bring precision agriculture a big chance under the National project related to the 10-year Implementation Plan for GEOSS

Decision by agricultural information
- Most appropriate day
- Seeding, planting, fertilizing
- How much pesticide should we spread?
- Soil moisture control

Future application
- Early-warning system for cold-weather damage
- Check system of right crop for right land system

Solution of food and environmental issues in the world
Thank you for your attention

Masaru Mizoguchi
Lab. of International Agro-Informatics
Dept. of Global Agricultural Science
University of Tokyo
JAPAN

amizo@mail.ecc.u-tokyo.ac.jp