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Tutorial of some statistical methods using R language 
 

Nobuhiko ENDO 

Japan Agency for Marine-Earth Science and Technology 

 

1. Introduction 

Dr. Tomoshige Inoue (JAMSTEC) found 

that a linear relationship between ENSO 

and rainfall in northeastern Thailand 

during March-April became strong in 

recent two decades (Fig. 1). When sea 

surface temperature in central-eastern 

tropical Pacific is warm (cool) during 

preceding winter, rainfall in 

northeastern Thailand tends to below 

(above) average in March-April in recent 

decades. Prof. Mizoguchi (Univ. Tokyo, 

Leader of GRENE-ei project) was very 

interesting in his results. Then he want 

to prepare a research tool for analyzing 

linear relation between two variables 

which can be easily used by 

undergraduate students. I will introduce R language for GRENE-ei colleagues. 

 

2. R language 

“R” is a free software for statistical study, and has been developed extensively in recent years. 

R project web page is found at https://www.r-project.org/. Introductory free text “simpleR - 

Using R for Introductory Statistics John Verzani” also can be obtain from https://cran.r-

project.org/doc/contrib/Verzani-SimpleR.pdf. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Rainfall total in northeast Thailand during 
March-April and Nino3.4 index during the previous 
winter (December – February) in upper panel. Unit of 
rainfall and that of Nino3.4 index are mm and °C, 
respectively. Time series of 15-years sliding 
correlation is shown in lower panel. Courtesy of Dr. 
Inoue (JAMSTEC). 
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R base package can obtain from CRAN 

mirror site at the Institute of Statistical 

Mathematics, Tokyo, Japan 

(http://cran.ism.ac.jp/). Most recent 

version of R is Version 3.2.2, and there is 

binary package for Linux, Mac OS X, and 

Microsoft Windows. Please download R 

base package, and install your personal 

computer. After installation, you can find 

an Icon “R” at your Desktop in PC. Please 

click and start “R”, then you will find 

“startup window of R” (see, Fig. 2).  

Next, choose [Edit] in menu bar, then 

[GUI preference]. You will find a window 

shown in Fig. 3, then select “SDI” in 

preference menu. Save preferences, then 

close the window.  

 

We assume that you put R scripts and 

data files in “C:¥Work¥R” and 

“C:¥Work¥R¥Data” in your hard drive. 

In R console, type following command 

and return. 

 

> setwd(“c:/Work/R”)  

> getwd() 

 

Working directory (folder) will change to “c:/Work/R”. It is note that we do not use “¥” in R, 

and instead use “/”. To quit “R”, type in “quit()” and push “return key”. 

 

> quit() 

 

 

3. Global surface air temperature anomaly 

Japan Meteorological Agency (JMA) compiles climatological anomaly time series of surface 

air temperature and precipitation based on their own observations and observed data 

distributed in World Meteorological Organization network.  

We will use the JMA’s climatological anomaly time series. The csv file (JMA_Anomaly.csv) 

  

Fig.2. Startup window of “R”. 

 
Fig. 3. Select “SDI”. 
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includes 1) global land surface air temperature anomaly, 2) northern hemisphere and 

southern hemisphere land average temperature anomalies, 3) surface air temperature 

anomaly of Japan which was compiled from 15 JMA stations, and 4) precipitation anomaly of 

Japan which was compiled from 51 JMA stations. For calculating temperature anomaly in 

Japan, JMA selected 15 stations which are rural station and to exclude urban heat island 

effects. 

 

Start “R”, then key in following commands. Note that line with “#” treated as “comment line” 

in R, and do not need key in “comment line”. 

 

# read JMA climatological anomaly data 

> x <- read.csv("./Data/JMA_Anomaly.csv", header = TRUE) 

# In R, “<-” mean “substitution”. 

# show first 10 rows in x. 

> head(x) 

  YEAR GL_TEMP NH_TEMP SH_TEMP JP_TEMP JP_RAIN 

1 1898   -0.66   -0.65   -0.68   -0.75    15.1 

2 1899   -0.56   -0.58   -0.55   -0.81   199.2 

3 1900   -0.49   -0.48   -0.51   -1.06   -43.3 

4 1901   -0.58   -0.55   -0.63   -1.03    48.6 

5 1902   -0.70   -0.75   -0.66   -1.03   154.7 

6 1903   -0.77   -0.78   -0.77   -0.77   266.2 

> 

There is 5 column. Column “YEAR” is AD Year. 

“GL_TEMP”, “NH_TEMP”, ”SH_TEMP” are 

globally averaged, northern hemisphere 

averaged, and southern hemisphere averaged 

surface air temperature anomaly, respectively. 

“JP_TEMP”, “JP_RAIN” are surface air 

temperature anomaly and precipitation 

anomaly averaged over Japan. 

Let’s plot global temperature anomaly. 

 

> plot(x$YEAR, x$GL_TEMP, type=”l”) 

 

You will get figure 4. It is obvious that the 

global surface temperature anomaly has 

increasing trend (long-term linearly upward tendency) over the period.  

Fig. 4. Time series of global surface 
temperature anomaly. 
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We will estimate the trend used by the least square fit in R. 

 

# Y = a0 + a1 * X 

#  x$YEAR as X. x$GL_TEMP as Y. 

#  lm is a function for least square fit 

> res <- lm(x$GL_TEMP ~ x$YEAR) 

# show summary of results. 

> summary(res) 

 

Call: 

lm(formula = x$GL_TEMP ~ x$YEAR) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.31745 -0.08373  0.00179  0.08435  0.28574  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.456e+01  6.292e-01  -23.14   <2e-16 *** 

x$YEAR       7.287e-03  3.216e-04   22.66   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.1175 on 115 degrees of freedom 

Multiple R-squared:  0.817,     Adjusted R-squared:  0.8154  

F-statistic: 513.3 on 1 and 115 DF,  p-value: < 2.2e-16 

 

> slope <- res$coefficients[2] 

> intercept <- res$coefficients[1] 

> plot(x$YEAR, x$GL_TEMP, type="l") 

> abline(res, col="red") 

 



5 
 

Figure 5 shows the global surface air 

temperature anomaly and the trend in same 

graph. The Trend in the global surface 

temperature anomaly was 7.287e-03 °C/year 

(0.73 °C/100year). 

The residual temperature anomaly is defined as 

 Residual Anomaly = Raw Temperature 

Anomaly – Long-term Trend 

The residual anomaly (also called as detrended 

time series) includes several time scale of 

variability. We will remove small temporal scale 

variability (less than 10 years) in the residual 

anomaly. 

 

# pick up “YEAR” column from data frame “x” 

> year1 <- x$YEAR 

# include R script for “running average”. 

> source("./MyRunAve.R") 

# set window size of running average. 11-year window. 

> window.size <- 11 

# get running averaged temperature anomaly. 

> t.runave <- MyRunAve( res$residual, window.size ) 

# t.runave is vector at this time. 
# we will convert from vector to data frame 

> t.runave <- as.data.frame( cbind(year1, t.runave ) ) 

# show dataframe. First 10 rows. NA means “missing value”. 

> head(t.runave, n = 10) 

# plot the residual anomaly. Do not draw axes, labels. 

# positive (negative) anomaly is drawn in red (blue) 

# set limit range for y-axis from -0.35 to 0.35 

# type = “h”means vertical bar plot 

> plot( x$YEAR, res$residual, type = "h", ylim = c(-0.35,0.35), axes = FALSE, xlab = "", 

ylab = "", col = ifelse(res$residual > 0.0, "red", "blue")) 

# to overlay second plot, use “par()” command. 

> par( new = TRUE ) 

# plot running average time series. “lwd”is thickness of line. 

> plot( t.runave$year1, t.runave$t.runave, type = "l", ylim = c(-0.35,0.35), lwd = 4, 

col = "orange", xlab = "Year", ylab = "Temperature Anomaly") 

 
Fig. 5. The global surface air 
temperature anomaly (black line) and 
trend (red line). 
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Fig. 6. The residual temperature anomaly time series (bar plot) and The 11-year running 

averaged temperature (orange line). Red (blue) mean positive (negative) anomaly. 

 

We get the residual time series and the 11-year running averaged temperature anomaly (Fig. 

6). It is obvious that there are relatively cold period in the early 20th century and from mid-

1940’s to mid-1990’s and relatively warm period from 1920’s to mid-1940’s and recent decades.  

To quit “R”, type “quit()”. 

 

4. Some topics in R 

In the previous section, we read the land surface temperature anomaly from “CSV” file. 

 

> x <- read.csv("./Data/JMA_Anomaly.csv", header = TRUE) 

 

In R, we can read “space (tab) separated” and “comma separated” ASCII file. “read.table()” 

and “read.csv()” functions for use reading “space (tab) separated” and “comma separated” text 

file, respectively. 

 

> x <- read.table("JMA_Tokyo_2.txt", header = TRUE) 

# show first 6 rows 

> head(x) 

  YEAR MON TAVE TMAX TMIN  RAIN 

1 1951   1  3.3  8.6 -1.0  36.4 

2 1951   2  4.5  9.7  0.4 120.4 

3 1951   3  8.8 14.2  4.1 149.1 

4 1951   4 13.3 18.3  9.0 177.1 

5 1951   5 18.0 23.3 13.9  86.4 

6 1951   6 21.2 25.9 17.3 144.3  
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A data frame “x” includes six columns, which are “YEAR”, “MON”, “TAVE”, “TMAX”, “TMIN” 

and “RAIN”. Those are monthly observed value at JMA Tokyo HQ. In R, we will use “data 

frame” structure. If you read the “space separated file” / “CSV file”, data are automatically 

transformed to “data frame”.  

To create a vector, we will use “c”. 

 

> x <- c(1,2,3,4,5) 

# to show first part of vector x 

> head(x) 

[1] 1 2 3 4 5 

# to get length of vector x 

> length(x) 

[1] 5 

 

“length()” is function for obtaining length of vector “x”. To create regular pattern vector, “seq()”, 

“rep()” functions. 

 

> c(1:5) 

[1] 1 2 3 4 5 

> c(3:-3) 

[1]  3  2  1  0 -1 -2 -3 

> rep(1:3,length=5) 

[1] 1 2 3 1 2 

> seq(1,10,length=5) 

[1]  1.00  3.25  5.50  7.75 10.00 

 

A data frame can include “numeric vector”, “character vector”, and “factor vector”. 

 

    Type   Length  Weight 

1     A      112       30 

2     B      153       55 

3     A      123       42 

 

“Type” is “factor”, and “Length” / ”Weight” is “numeric”. Next example show how to create a 

data frame. 

 

# numeric vector 
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> nvec <- c(1951,1961,1971,1981,1991) 

# vector contain factor 

> fvec <- c("A","A","B","C","B") 

# create a data frame. "cbind()" works for binding columns. 

> new.dt <- cbind(nvec,fvec) 

# attach column names 

> colnames(new.dt) <- c("YEAR", "TYPE") 

> head(new.dt) 

     YEAR   TYPE 

[1,] "1951" "A"  

[2,] "1961" "A"  

[3,] "1971" "B"  

[4,] "1981" "C"  

[5,] "1991" "B"  

# pick up an element. 

> new.dt[1,2] 

TYPE  

 "A"  

> new.dt[2,1] 

  YEAR  

"1961"  

# select a column 

> new.dt[,1] 

[1] "1951" "1961" "1971" "1981" "1991" 

# select a row 

> new.dt[2,] 

  YEAR   TYPE  

"1961"    "A" 

 

If you want delete any data frame / vector / object, “rm()” function is available. 

 

# delete single object x 

> rm(x) 

# delete all objects 

> rm(list=ls()) 

 

Exercise.  

A. Plot long-term precipitation anomaly of Japan. Anomaly data is stored in 
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“JMA_Anomaly.csv”. To read data, you should use “read.csv()” with option “header = 

TRUE”. 

B.  Plot a time series of rice production in Thailand. The rice production data are stored in 

“Rice_Thailand.csv”. The rice production data were obtained from FAO database and 

“World Rice Statistics” (Palacpac, 1977). 

 

5. How to save graph plot and data frame 

In this section, we will introduce method for saving a graph plot. We can save a graph as 

“PNG”, and “PDF”. 

 

> x <- c(1951,1961,1971,1981,1991) 

> y <- c(1:5) 

# plot symbol at (x,y) 

> plot(x, y) 

# plot line at (x, y) 

> plot(x, y, type="l") 

# to save a graph to PNG file. First set resolution in ppi unit. 

> ppi <- 300 

# width and height are in inch. 

> png("fig_1.png", width = 6 * ppi, height = 3 * ppi, res = ppi) 

> plot(nvec,x,type="l") 

> dev.off() 

> 

# to save a PDF file. 

> pdf("fig_1.pdf") 

> plot(nvec,x,type="l") 

> dev.off() 

# save data frame 

> new.dt <- cbind(x, y) 

> colnames(new.dt) <- c("YEAR","TYPE") 

> head(new.dt) 

> write.csv(new.dt,"test1.csv",row.names=FALSE) 

# You can read "test1.csv" in Microsoft Excel. 

 

Exercise. 

A. Plot a climatological precipitation anomaly time series of Japan, and save it to a PNG file. 

“JMA_Anomaly.csv” has the precipitation anomaly data as “JP_RAIN”. 
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6. What is running mean (average) 

In section 3, we applied an 11-year running mean (average) to the residual temperature 

anomaly series. What is the running mean? Running mean is a simple weighted average in a 

fixed time window (Box weight). Let ݕ௜ is observed values, and i is time index. 

y௜ ൌ
1

2݊ ൅ 1
	 ෍ ௜ݕ ൌ ௞ݓ 	 ෍ ௜ݕ

௡

௞ୀି௡

௡

௞ୀି௡

	 

For the 11-year running mean, window length and n are related as 11 ൌ 2n ൅ 1. Therefore, 

n ൌ 5. An average was obtained from index i=-5 to index i=5. 

 

Weights are w୩ ൌ 1/ሺ2݊ ൅ 1ሻ, and equal over the window. In figure 7, two example of weight 

for the 11-year running mean are shown. One is equal weight (box weight), and another is 

cosine weight. 

w୩ ൌ 	
1 ൅ ሻ݊/݇ߨሺ	ݏ݋ܿ

2݊
	 

As shown in response function (right panel of Fig. 7), the observed component with frequency 

larger than 0.1 (the observed signal less than 10 years periodicity) are almost eliminated from 

the original observed time series after applied the equally weighted average. However, the 

simple equally weighted mean has drawback. As shown in Fig. 7, the response function 

indicate wave-like form around 0. This means that the weighted averaged time series is 

contaminated. On the other hand, the cosine weighted average shows no wave-like form in 

response function. So, the cosine weighted mean is better than the simple equally weighted 

mean. In despite of the drawback in the simple equally weight mean, the simple equally 

weighted mean has been used in meteorological / climatological study. 

 

5. Correlation between observed data 

Correlation coefficient is a measure of linear association between two variables. Correlation 

coefficient easily calculated in R. In this section, we will use a data file “JMA_Consume.csv” 

and calculate correlation coefficient between two variables. There is following variables: 

 
Fig. 7. Weight distribution (left), and its response function (right). Box (cosine) weight 
is shown in black (red) line. 
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“Mon”, “Day”, “Temp”, “Watermelon”, “Icecream”, and “ChineseNoodle” in 

“JMA_Consume.csv”. “Temp” is average surface air temperature prepared from 15 JMA 

stations. Watermelon, Ice Cream, and Chinese Noodle are consumer spending in Japan from 

July to August, 2015. The consumer spending data were obtained from the statistical office 

of Japanese Government. 

 

# remove all objects before used. 

> rm(list=ls()) 

# read data 

> x <- read.csv("./Data/JMA_Consume.csv",header=TRUE) 

# check the data 

# Temp = air temp (degC). Watermelon, Icecream, Chinese Noodle are in unit of JPY. 

> head(x) 

  Mon Day     Temp Watermelon Icecream ChineseNoodle 

1   7   1 23.96667       6.90    25.88          9.73 

2   7   2 26.61333      10.16    36.90          8.13 

3   7   3 25.44667       7.33    33.15         12.61 

4   7   4 23.40667      13.34    39.25         25.93 

5   7   5 23.74000      12.16    41.02         33.77 

6   7   6 23.56667       6.74    18.88          7.80 

# pch=16 means plot filled circle 

> plot(x$Temp,x$Watermelon, col="red", pch=16) 

 

We get a scatter plot between air temperature and consumption of watermelon in Japan (Fig. 

8, left). It is clearly showed that most of people tend to buy watermelon when air temperature 

was high. Similar result is also true for Ice Cream. On the contrary, there is no linear relation 

between air temperature and consumption of Chinese Noodle (Fig. 8, right).  

 
Fig.8. Scatter plot between air temperature and consumption of watermelon (left) and 
Chinese Noodle (right) in Japan. 
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Let’s evaluate how linearly associated between watermelon and air temperature using with 

“cor.test()” function. 

 

> cor.test(x$Temp,x$Watermelon) 

 

        Pearson's product-moment correlation 

 

data:  x$Temp and x$Watermelon 

t = 7.7753, df = 60, p-value = 1.185e-10 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 0.5572856 0.8141508 

sample estimates: 

      cor  

0.7084439 

 

The “cor.test()” calculate “correlation coefficient”, and statistical significance also evaluate. 

Statistical test for correlation coefficient evaluate “correlation coefficient is 0 (zero)” or not. 

The result of “cor.test()” showed that correlation coefficient between air temperature and 

consumption of watermelon is 0.708. Further, p-value is 1.185e-10. If we set a significance 

level of 0.05, the p-value is smaller than 0.05. So, the correlation coefficient is statistically 

different from 0. 

 

Let’s move another example. We will revisit well known relationship between sea surface 

temperature in the tropical Pacific and sea level pressure index produced from observations 

at Darwin, Australia and Tahiti Island (Southern Oscillation Index; SOI). Nino 3.4 index is a 

measure of activity of El Nino/La Nina phenomenon, which is regional average of sea surface 

temperature 5°S-5°N, 170°W-120°W. When Nino 3.4 is higher (lower) than 0.5 (-0.5) °C and 

continue 5 months, we consider El Nino (La Nina) event has occurred. SOI is difference 

between Tahiti and Darwin (Tahiti minus Darwin). When La Nina (El Nino) event occur, SOI 

is positive (negative).  

 
Fig. 9. Schematic figure for El Nino and La Nina condition (NOAA/CPC). 
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At first, a 5-month running mean applied to “nino 3.4” and SOI time series. Then the boreal 

winter season (Dec – Feb) mean were prepared. Data files were “./Data/nino_DJF.csv”, 

“./Data/soi_DJF.csv”, respectively. 

 

> x <- read.csv("./Data/nino_DJF.csv", header = TRUE) 

> head(x) 

# x is a temporal data frame. Nino3.4 index is available from 1951. 

# On the contrary, SOI are available from 1952. So, delete Nino3.4 data of 1951. 

# delete first row 

> nino <- x[-1,] 

> head(nino) 

  YEAR NINO34  ANOM 

2 1952  26.92  0.30 

3 1953  26.86  0.23 

4 1954  27.08  0.46 

5 1955  25.60 -1.02 

6 1956  25.29 -1.33 

7 1957  26.13 -0.50 

> rm(x) 

# read SOI index : Dec-Feb mean. 

> soi <- read.csv("./Data/soi_DJF.csv", header = TRUE) 

> head(soi) 

  YEAR         SOI 

1 1952 -0.56000000 

2 1953 -0.26666667 

3 1954  0.02666667 

4 1955  0.66666667 

5 1956  1.27333333 

6 1957  0.50666667 

> plot(nino$NINO, soi$SOI, pch=16, col="red") 

> cor.test(nino$NINO, soi$SOI) 

 

        Pearson's product-moment correlation 

 

data:  nino$NINO and soi$SOI 

t = -16.157, df = 57, p-value < 2.2e-16 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 
Fig. 10 Scatter plot between 
Nino3.4 index and SOI index 
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 -0.9432223 -0.8462118 

sample estimates: 

       cor  

-0.9059704  

 

It is obvious that there is very strong linear relationship between Nino 3.4 index and SOI 

index for the period 1952-2010 (Fig. 10). When Nino 3.4 index is strongly low, SOI index is 

simultaneously high (La Nina condition). On the contrary, Nino 3.4 is high with low SOI (El 

Nino). Linear relationship between Nino 3.4 and SOI is -0.906 with very low p-value (2.2e-

16). 

 

Exercise. 

A. Evaluate linear association between rainfall at Darwin and SOI. Monthly rainfall at 

Darwin are in “Rain_Darwin_2.csv”. SOI are in “soi_std_3.csv”. 

B. Evaluate linear association between monthly average surface air temperature at Tokyo 

and Nino 3.4 index. Meteorological data at Tokyo are in “JMA_Tokyo_2.txt”, and Nino 3.4 

are in “ersst3b.nino34_2.csv”. 

 

7. Sliding correlation 

Sliding correlation (moving window correlation) is used for investigation of temporal 

variation in linear relationship between two variables. In climatologically, ENSO and other 

largescale phenomena shows a decadal scale variability. Therefore a linear relationship 

between ENSO and rainfall at some region may change from an epoch to another epoch. In 

this section, we will calculate sliding correlation. 

In this section we will use an R package 

“dplyr”. To install required R package, 

setup CRAN mirror site (Fig. 11). Select 

[Package] in menu bar, window “HTTPS 

CRAN mirror” will pop up. Select “HTTP 

mirrors” and push “OK”. New window 

“HTTP CRAN mirror” will open. Select 

“JAPAN (Tokyo)”. Back to R console, please 

type following command, then push return 

key. 

 

> install.packages(“dplyr”) 

 

“dplyr” is a very useful package for 

 
Fig.11 Choose “(HTTP mirrors)”, then choose 
again “Japan (Tokyo)”. 
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aggregation / searching large data.  

When using “dplyr”, some tricky code will introduce. Other programing language use “y = x”, 

this means “x” substitute to “y”. However, “dplyr” use another syntax. “x -> y”, this means “x” 

substitute to “y”. In addition, “%>%” can be use in script. These syntax called as “chain 

syntax”. 

 

We will use monthly rainfall data at Kohn Kaen, northeast Thailand.  

 

> library(dplyr) 

> x <- read.table("./Data/Rain_TMD_KhonKaen_2.txt", header = TRUE) 

> head(x) 

  YEAR MON  RAIN 

1 1951   1   9.8 

2 1951   2  23.5 

3 1951   3  22.9 

4 1951   4  80.7 

5 1951   5 181.7 

6 1951   6 208.1 

# pick up rainfall data in Marth and April. Picked data substitute to "y". 

# chain syntax %>% will be used. 

# first select March/April data, then data after 1952 are picked up. 

> filter(x, MON>=3&MON<=4) %>% filter(YEAR>=1952) -> y 

# group_by(YEAR) :  It means for "each YEAR" 

# summarize(RR_MA = sum(RAIN)) : It will gets rainfall in March + April 

# Total rainfall during March/April is stored in data frame ‘rr’ 

> y %>% group_by(YEAR) %>% summarize(RR_MA = sum(RAIN)) -> rr 

> head(rr) 

Source: local data frame [6 x 2] 

   YEAR RR_MA 

  (int) (dbl) 

1  1952 187.3 

2  1953 123.6 

3  1954  40.6 

4  1955  84.0 

5  1956 128.0 

6  1957 164.0 

# plot time series 

> plot(rr$YEAR, rr$RR_MA, type="h") 

 

Fig. 12 Time series of RR_MA 
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# write data frame ‘rr’ to CSV file.         

> write.csv(rr, "./Rain_KK_MA.csv", row.names = FALSE)  

# delete all object 

> rm(list=ls()) 

> 

# read Nino3.4 DJF data 

> x <- read.csv("./Data/nino_DJF.csv", header = TRUE) 

> nino <- x[-1,] 

> head(nino) 

  YEAR       NINO 

2 1952  0.3760000 

3 1953  0.1966667 

4 1954  0.2913333 

5 1955 -0.9933333 

6 1956 -1.3673333 

7 1957 -0.3813333 

> rr <- read.csv("./Rain_KK_MA.csv") 

> head(rr) 

  YEAR RR_MA 

1 1952 187.3 

2 1953 123.6 

3 1954  40.6 

4 1955  84.0 

5 1956 128.0 

6 1957 164.0 

# check length of both data 

> length(nino$NINO) 

[1] 59 

> length(rr$RR_MA) 

[1] 59 

# include a script which get statistical significant correlation coefficient at 5% point

> source("./MyCorLimit.R") 

# include a sliding correlation script 

> source("./MySlidCor.R") 

# set window size : 13-year window 

> window <- 13 

# calculation of sliding correlation 

> res <- MySlidCor(nino$NINO, rr$RR_MA, window) 
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# check first 10 rows in ‘res’. ‘res’ is matrix 

> head(res,n=10) 

          corVal      pVal 

 [1,]         NA        NA 

 [2,]         NA        NA 

 [3,]         NA        NA 

 [4,]         NA        NA 

 [5,]         NA        NA 

 [6,]         NA        NA 

 [7,] -0.1859529 0.5430217 

 [8,] -0.4121778 0.1616505 

 [9,] -0.3366898 0.2606415 

[10,] -0.1881112 0.5382650 

# set significance level at 0.05. 

> alpha <- 0.05 

# calculate limit of correlation coefficient 

> cor.limit <- MyCorLimit(window, alpha) 

> cor.limit 

[1]  0.5529427 -0.5529427 

# If correlation coefficient is larger (smaller) than 0.553 (-0.553),  

# correlation coefficient is different from ‘0’(statistically significant) 

# 

# get year 

> years <- rr$YEAR 

# conbine year and res, then create new data frame ‘res2’ 

> res2 <- as.data.frame(cbind(years,res)) 

# check ‘res2’, first 10 rows. NA means “No data” 

# corVal is correlation coefficient 

# pVal is p-value 

> head(res2,n=10) 

   years     corVal      pVal 

1   1952         NA        NA 

2   1953         NA        NA 

3   1954         NA        NA 

4   1955         NA        NA 

5   1956         NA        NA 

6   1957         NA        NA 

7   1958 -0.1859529 0.5430217 
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8   1959 -0.4121778 0.1616505 

9   1960 -0.3366898 0.2606415 

10  1961 -0.1881112 0.5382650 

# plot time series of correlation. 

> plot(res2$years,res2$corVal, type="l", ylim = c(-0.8,0.2), xlab = "YEAR", ylab = 

"Correlation Coef.", col = "red", lwd = 2) 

# add horizontal zero-line 

> abline(h=0) 

# add horizontal line of upper limit of correlation coef. 

> abline(h=cor.limit[1], col = "blue") 

# add horizontal line of lower limit of correlation coef. 

> abline(h=cor.limit[2], col = "blue") 

# plot save to PNG file 

# set resolution in ppi. Width and length are Inch. 

> ppi <- 300 

> png("fig_KohnKane_cor.png", width = 6 * ppi, height = 3 * ppi, res = ppi) 

> plot(res2$years, res2$corVal, type = "l", ylim = c(-0.8,0.2), xlab = "YEAR", ylab = 

"Correlation Coef.", col = "red", lwd = 2) 

> abline(h=0) 

> abline(h=cor.limit[2], col = "blue") 

# output to PNG is finished by dev.off(). Do not forget this function. 

> dev.off() 

# write out the results to CSV file 

> write.csv(res2, "./res_KohnKane_cor.csv", row.names = FALSE) 

# QUIT R 

> quit() 

 

In this example, we calculated the 

correlation coefficient between 

March-April total rainfall at Kohn 

Kaen, Thailand and previous DJF 

mean Nino 3.4 Index with 13-years 

sliding window. Figure 13 shows the 

result. A horizontal blue line is limit 

of correlation coefficient with degree 

of freedom = 11. Correlation 

coefficient is statistically different 

from ‘0’ at 0.05 % level. 

Fig. 13. 13-years window sliding correlation 
between March-April rainfall at Kohn Kaen, 
Thailand and previous winter (Dec-Feb) mean 
Nino 3.4 index. 
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It is also note that window size can be arbitrarily 

chosen, but should be odd number.  

El Nino / La Nina phenomenon occurred 5 to 9 

times for each decade (Table 1). So, we can 

choose 13-year window. If the phenomena only 

occur every 15 year, we cannot choose 13-year 

window size. 

You need to consider a characteristics of a 

phenomena’s variability.  

 

 

 

Appendix A. List of R scripts. 

 

Name Description 

MyCorLimit.R Calculate upper/lower limit of correlation coefficient. 

x <- MyCorLimit(n, alpha) 

<In> n : length of vector (number of pairs), alpha : significance level, 

usually uses 0.05 or 0.01. 

<Return> vector of upper/lower limit of correlation coefficient. 

MyRunAve.R Calculate running average 

y <- MyRunAve(x, window) 

<In> x : a vector of observations, window : size of window (e.g. if 

window=11, 11-years running average.) 

<Return> y : vector of running averaged observations 

MySlidCor.R Calculate sliding correlation. 

z <- MySlidCor(x, y, window) 

<In> x : a vector of observations. y : another vector of observations. 

window : size of sliding window (e.g. if window=13, 13-years sliding 

correlation coefficient. 

<Return> z : matrix of corVal and pVal. corVal are time series of the 

sliding correlation coefficient. pVal are time series of the calculated p-

values. 

 

 

 

 

 

Table 1. Number of El Nino / La Nina 
years defined by NOAA/CPC. 
 

Decades El Nino La Nina 

1950’s 5 3 

1960’s 3 2 

1970’s 4 5 

1980’s 3 2 

1990’s 3 3 

2000’s 4 2 
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Appendix B. List of data file. 

 

Name Data 

ersst3b.nino34_2.csv Monthly Nino3.4 index provided by NOAA/CPC. 

NINO3.4 : Sea surface temperature. 

ANOM : Anomaly of NINO3.4 

nino.runave : 5-month running average of ANOM. 

JMA_Anomaly.csv Climatological annual anomaly time series compiled 

by JMA. 

GL_TEMP: Global surface air temperature anomaly.

NH_TEMP: Northern Hemisphere temp. anomaly. 

SH_TEMP: Southern Hemisphere temp. anomaly. 

JP_TEMP: Annual mean temperature anomaly in 

Japan. Compiled from 15 JMA stations. 

JP_RAIN: Annual total precipitation anomaly in 

Japan. Compiled from 51 JMA stations. 

JMA_Consume.csv Daily mean temperature and consumption value in 

Japan during July-August 2015. Daily consumption 

values were provided by e-stat of Japan. 

Temp: Daily mean temperature. The data were 

averaged value of 15 JMA stations. 

Watermelon: consumption value of watermelon. 

Icecream: consumption value of ice cream. 

ChineseNoodle: consumption value of Chinese 

noodle. 

JMA_Kyoto_2.txt Monthly mean maximum / average / minimum 

temperature, and monthly total precipitation at 

JMA Kyoto. 

TAVE: Monthly mean average temperature. 

TMAX: Monthly mean maximum temperature. 

TMIN: Monthly mean minimum temperature. 

RAIN: Monthly total precipitation. 

JMA_Tokyo_2.txt Same as JMA_Kyoto_2.txt, but for JMA Tokyo. 

nino_DJF.csv Boreal winter (Dec-Feb) mean of 5-month running 

averaged Nino3.4 anomaly. 

NINO: Nino3.4 DJF mean. 

Rain_Darwin_2.csv Monthly total precipitation at Darwin, Australia. 

Precipitation data were obtained from BOM, 
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Australia. 

RAIN: Monthly total precipitation. 

Rain_TMD_Ann.csv All Thailand mean annual rainfall. Original data 

were obtained from TMD. Mean annual rainfall time 

series were simple arithmetic average of 47 stations.

RR: All Thailand mean annual rainfall. 

Rain_TMD_KhonKaen_2.txt Monthly total precipitation at Khon Kaen, Thailand.

Precipitation data were obtained from TMD, 

Thailand. 

RAIN: Monthly total precipitation. 

Rain_TMD_UbonRatchathani_2.txt Same as Rain_TMD_KhonKaen_2.txt, but for Ubon 

Ratchathani, Thailand. 

Rice_Japan.csv Time series of area of paddy field, rice production, 

and yield in Japan. Data were obtained from e-stat, 

Japan. 

Area: unit is ha. 

Production: unit is t. 

Yield: unit is kg/10a. 

Rice_Thailand.csv Time series of area of harvested are, rice production, 

and yield in Thailand. Data were obtained from 

FAO, and supplemented from “World Rice Statistics” 

by Palacpac (1977). 

Area: unit is ha. 

Production: unit is t. 

Yield: unit is kg/10a. 

soi_DJF.csv Boreal winter (Dec-Feb) mean SOI. SOI was 5-

month running averaged first. SOI was obtained 

from NOAA/CPC. 

SOI: Southern Oscillation Index. 

soi_std_3.csv Monthly SOI and 5-month running averaged SOI. 

SOI was obtained from NOAA/CPC. 

SOI: Southern Oscillation Index (Standardized) 

soi.runave: 5-month running averaged SOI. 

 


