
1

Tutorial of some statistical methods using R language

Nobuhiko ENDO

Japan Agency for Marine-Earth Science and Technology

1. Introduction

Dr. Tomoshige Inoue (JAMSTEC) found

that a linear relationship between ENSO

and rainfall in northeastern Thailand

during March-April became strong in

recent two decades (Fig. 1). When sea

surface temperature in central-eastern

tropical Pacific is warm (cool) during

preceding winter, rainfall in

northeastern Thailand tends to below

(above) average in March-April in recent

decades. Prof. Mizoguchi (Univ. Tokyo,

Leader of GRENE-ei project) was very

interesting in his results. Then he want

to prepare a research tool for analyzing

linear relation between two variables

which can be easily used by

undergraduate students. I will introduce R language for GRENE-ei colleagues.

2. R language

“R” is a free software for statistical study, and has been developed extensively in recent years.

R project web page is found at https://www.r-project.org/. Introductory free text “simpleR -

Using R for Introductory Statistics John Verzani” also can be obtain from https://cran.r-

project.org/doc/contrib/Verzani-SimpleR.pdf.

Fig.1. Rainfall total in northeast Thailand during
March-April and Nino3.4 index during the previous
winter (December – February) in upper panel. Unit of
rainfall and that of Nino3.4 index are mm and °C,
respectively. Time series of 15-years sliding
correlation is shown in lower panel. Courtesy of Dr.
Inoue (JAMSTEC).

2

R base package can obtain from CRAN

mirror site at the Institute of Statistical

Mathematics, Tokyo, Japan

(http://cran.ism.ac.jp/). Most recent

version of R is Version 3.2.2, and there is

binary package for Linux, Mac OS X, and

Microsoft Windows. Please download R

base package, and install your personal

computer. After installation, you can find

an Icon “R” at your Desktop in PC. Please

click and start “R”, then you will find

“startup window of R” (see, Fig. 2).

Next, choose [Edit] in menu bar, then

[GUI preference]. You will find a window

shown in Fig. 3, then select “SDI” in

preference menu. Save preferences, then

close the window.

We assume that you put R scripts and

data files in “C:¥Work¥R” and

“C:¥Work¥R¥Data” in your hard drive.

In R console, type following command

and return.

> setwd(“c:/Work/R”)

> getwd()

Working directory (folder) will change to “c:/Work/R”. It is note that we do not use “¥” in R,

and instead use “/”. To quit “R”, type in “quit()” and push “return key”.

> quit()

3. Global surface air temperature anomaly

Japan Meteorological Agency (JMA) compiles climatological anomaly time series of surface

air temperature and precipitation based on their own observations and observed data

distributed in World Meteorological Organization network.

We will use the JMA’s climatological anomaly time series. The csv file (JMA_Anomaly.csv)

Fig.2. Startup window of “R”.

Fig. 3. Select “SDI”.

3

includes 1) global land surface air temperature anomaly, 2) northern hemisphere and

southern hemisphere land average temperature anomalies, 3) surface air temperature

anomaly of Japan which was compiled from 15 JMA stations, and 4) precipitation anomaly of

Japan which was compiled from 51 JMA stations. For calculating temperature anomaly in

Japan, JMA selected 15 stations which are rural station and to exclude urban heat island

effects.

Start “R”, then key in following commands. Note that line with “#” treated as “comment line”

in R, and do not need key in “comment line”.

read JMA climatological anomaly data

> x <- read.csv("./Data/JMA_Anomaly.csv", header = TRUE)

In R, “<-” mean “substitution”.

show first 10 rows in x.

> head(x)

 YEAR GL_TEMP NH_TEMP SH_TEMP JP_TEMP JP_RAIN

1 1898 -0.66 -0.65 -0.68 -0.75 15.1

2 1899 -0.56 -0.58 -0.55 -0.81 199.2

3 1900 -0.49 -0.48 -0.51 -1.06 -43.3

4 1901 -0.58 -0.55 -0.63 -1.03 48.6

5 1902 -0.70 -0.75 -0.66 -1.03 154.7

6 1903 -0.77 -0.78 -0.77 -0.77 266.2

>

There is 5 column. Column “YEAR” is AD Year.

“GL_TEMP”, “NH_TEMP”, ”SH_TEMP” are

globally averaged, northern hemisphere

averaged, and southern hemisphere averaged

surface air temperature anomaly, respectively.

“JP_TEMP”, “JP_RAIN” are surface air

temperature anomaly and precipitation

anomaly averaged over Japan.

Let’s plot global temperature anomaly.

> plot(x$YEAR, x$GL_TEMP, type=”l”)

You will get figure 4. It is obvious that the

global surface temperature anomaly has

increasing trend (long-term linearly upward tendency) over the period.

Fig. 4. Time series of global surface
temperature anomaly.

4

We will estimate the trend used by the least square fit in R.

Y = a0 + a1 * X

x$YEAR as X. x$GL_TEMP as Y.

lm is a function for least square fit

> res <- lm(x$GL_TEMP ~ x$YEAR)

show summary of results.

> summary(res)

Call:

lm(formula = x$GL_TEMP ~ x$YEAR)

Residuals:

 Min 1Q Median 3Q Max

-0.31745 -0.08373 0.00179 0.08435 0.28574

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.456e+01 6.292e-01 -23.14 <2e-16 ***

x$YEAR 7.287e-03 3.216e-04 22.66 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1175 on 115 degrees of freedom

Multiple R-squared: 0.817, Adjusted R-squared: 0.8154

F-statistic: 513.3 on 1 and 115 DF, p-value: < 2.2e-16

> slope <- res$coefficients[2]

> intercept <- res$coefficients[1]

> plot(x$YEAR, x$GL_TEMP, type="l")

> abline(res, col="red")

5

Figure 5 shows the global surface air

temperature anomaly and the trend in same

graph. The Trend in the global surface

temperature anomaly was 7.287e-03 °C/year

(0.73 °C/100year).

The residual temperature anomaly is defined as

 Residual Anomaly = Raw Temperature

Anomaly – Long-term Trend

The residual anomaly (also called as detrended

time series) includes several time scale of

variability. We will remove small temporal scale

variability (less than 10 years) in the residual

anomaly.

pick up “YEAR” column from data frame “x”

> year1 <- x$YEAR

include R script for “running average”.

> source("./MyRunAve.R")

set window size of running average. 11-year window.

> window.size <- 11

get running averaged temperature anomaly.

> t.runave <- MyRunAve(res$residual, window.size)

t.runave is vector at this time.
we will convert from vector to data frame

> t.runave <- as.data.frame(cbind(year1, t.runave))

show dataframe. First 10 rows. NA means “missing value”.

> head(t.runave, n = 10)

plot the residual anomaly. Do not draw axes, labels.

positive (negative) anomaly is drawn in red (blue)

set limit range for y-axis from -0.35 to 0.35

type = “h”means vertical bar plot

> plot(x$YEAR, res$residual, type = "h", ylim = c(-0.35,0.35), axes = FALSE, xlab = "",

ylab = "", col = ifelse(res$residual > 0.0, "red", "blue"))

to overlay second plot, use “par()” command.

> par(new = TRUE)

plot running average time series. “lwd”is thickness of line.

> plot(t.runave$year1, t.runave$t.runave, type = "l", ylim = c(-0.35,0.35), lwd = 4,

col = "orange", xlab = "Year", ylab = "Temperature Anomaly")

Fig. 5. The global surface air
temperature anomaly (black line) and
trend (red line).

6

Fig. 6. The residual temperature anomaly time series (bar plot) and The 11-year running

averaged temperature (orange line). Red (blue) mean positive (negative) anomaly.

We get the residual time series and the 11-year running averaged temperature anomaly (Fig.

6). It is obvious that there are relatively cold period in the early 20th century and from mid-

1940’s to mid-1990’s and relatively warm period from 1920’s to mid-1940’s and recent decades.

To quit “R”, type “quit()”.

4. Some topics in R

In the previous section, we read the land surface temperature anomaly from “CSV” file.

> x <- read.csv("./Data/JMA_Anomaly.csv", header = TRUE)

In R, we can read “space (tab) separated” and “comma separated” ASCII file. “read.table()”

and “read.csv()” functions for use reading “space (tab) separated” and “comma separated” text

file, respectively.

> x <- read.table("JMA_Tokyo_2.txt", header = TRUE)

show first 6 rows

> head(x)

 YEAR MON TAVE TMAX TMIN RAIN

1 1951 1 3.3 8.6 -1.0 36.4

2 1951 2 4.5 9.7 0.4 120.4

3 1951 3 8.8 14.2 4.1 149.1

4 1951 4 13.3 18.3 9.0 177.1

5 1951 5 18.0 23.3 13.9 86.4

6 1951 6 21.2 25.9 17.3 144.3

7

A data frame “x” includes six columns, which are “YEAR”, “MON”, “TAVE”, “TMAX”, “TMIN”

and “RAIN”. Those are monthly observed value at JMA Tokyo HQ. In R, we will use “data

frame” structure. If you read the “space separated file” / “CSV file”, data are automatically

transformed to “data frame”.

To create a vector, we will use “c”.

> x <- c(1,2,3,4,5)

to show first part of vector x

> head(x)

[1] 1 2 3 4 5

to get length of vector x

> length(x)

[1] 5

“length()” is function for obtaining length of vector “x”. To create regular pattern vector, “seq()”,

“rep()” functions.

> c(1:5)

[1] 1 2 3 4 5

> c(3:-3)

[1] 3 2 1 0 -1 -2 -3

> rep(1:3,length=5)

[1] 1 2 3 1 2

> seq(1,10,length=5)

[1] 1.00 3.25 5.50 7.75 10.00

A data frame can include “numeric vector”, “character vector”, and “factor vector”.

 Type Length Weight

1 A 112 30

2 B 153 55

3 A 123 42

“Type” is “factor”, and “Length” / ”Weight” is “numeric”. Next example show how to create a

data frame.

numeric vector

8

> nvec <- c(1951,1961,1971,1981,1991)

vector contain factor

> fvec <- c("A","A","B","C","B")

create a data frame. "cbind()" works for binding columns.

> new.dt <- cbind(nvec,fvec)

attach column names

> colnames(new.dt) <- c("YEAR", "TYPE")

> head(new.dt)

 YEAR TYPE

[1,] "1951" "A"

[2,] "1961" "A"

[3,] "1971" "B"

[4,] "1981" "C"

[5,] "1991" "B"

pick up an element.

> new.dt[1,2]

TYPE

 "A"

> new.dt[2,1]

 YEAR

"1961"

select a column

> new.dt[,1]

[1] "1951" "1961" "1971" "1981" "1991"

select a row

> new.dt[2,]

 YEAR TYPE

"1961" "A"

If you want delete any data frame / vector / object, “rm()” function is available.

delete single object x

> rm(x)

delete all objects

> rm(list=ls())

Exercise.

A. Plot long-term precipitation anomaly of Japan. Anomaly data is stored in

9

“JMA_Anomaly.csv”. To read data, you should use “read.csv()” with option “header =

TRUE”.

B. Plot a time series of rice production in Thailand. The rice production data are stored in

“Rice_Thailand.csv”. The rice production data were obtained from FAO database and

“World Rice Statistics” (Palacpac, 1977).

5. How to save graph plot and data frame

In this section, we will introduce method for saving a graph plot. We can save a graph as

“PNG”, and “PDF”.

> x <- c(1951,1961,1971,1981,1991)

> y <- c(1:5)

plot symbol at (x,y)

> plot(x, y)

plot line at (x, y)

> plot(x, y, type="l")

to save a graph to PNG file. First set resolution in ppi unit.

> ppi <- 300

width and height are in inch.

> png("fig_1.png", width = 6 * ppi, height = 3 * ppi, res = ppi)

> plot(nvec,x,type="l")

> dev.off()

>

to save a PDF file.

> pdf("fig_1.pdf")

> plot(nvec,x,type="l")

> dev.off()

save data frame

> new.dt <- cbind(x, y)

> colnames(new.dt) <- c("YEAR","TYPE")

> head(new.dt)

> write.csv(new.dt,"test1.csv",row.names=FALSE)

You can read "test1.csv" in Microsoft Excel.

Exercise.

A. Plot a climatological precipitation anomaly time series of Japan, and save it to a PNG file.

“JMA_Anomaly.csv” has the precipitation anomaly data as “JP_RAIN”.

10

6. What is running mean (average)

In section 3, we applied an 11-year running mean (average) to the residual temperature

anomaly series. What is the running mean? Running mean is a simple weighted average in a

fixed time window (Box weight). Let ݕ௜ is observed values, and i is time index.

y௜ ൌ
1

2݊ ൅ 1
	 ෍ ௜ݕ ൌ ௞ݓ 	 ෍ ௜ݕ

௡

௞ୀି௡

௡

௞ୀି௡

	

For the 11-year running mean, window length and n are related as 11 ൌ 2n ൅ 1. Therefore,

n ൌ 5. An average was obtained from index i=-5 to index i=5.

Weights are w୩ ൌ 1/ሺ2݊ ൅ 1ሻ, and equal over the window. In figure 7, two example of weight

for the 11-year running mean are shown. One is equal weight (box weight), and another is

cosine weight.

w୩ ൌ 	
1 ൅ ሻ݊/݇ߨሺ	ݏ݋ܿ

2݊
	

As shown in response function (right panel of Fig. 7), the observed component with frequency

larger than 0.1 (the observed signal less than 10 years periodicity) are almost eliminated from

the original observed time series after applied the equally weighted average. However, the

simple equally weighted mean has drawback. As shown in Fig. 7, the response function

indicate wave-like form around 0. This means that the weighted averaged time series is

contaminated. On the other hand, the cosine weighted average shows no wave-like form in

response function. So, the cosine weighted mean is better than the simple equally weighted

mean. In despite of the drawback in the simple equally weight mean, the simple equally

weighted mean has been used in meteorological / climatological study.

5. Correlation between observed data

Correlation coefficient is a measure of linear association between two variables. Correlation

coefficient easily calculated in R. In this section, we will use a data file “JMA_Consume.csv”

and calculate correlation coefficient between two variables. There is following variables:

Fig. 7. Weight distribution (left), and its response function (right). Box (cosine) weight
is shown in black (red) line.

11

“Mon”, “Day”, “Temp”, “Watermelon”, “Icecream”, and “ChineseNoodle” in

“JMA_Consume.csv”. “Temp” is average surface air temperature prepared from 15 JMA

stations. Watermelon, Ice Cream, and Chinese Noodle are consumer spending in Japan from

July to August, 2015. The consumer spending data were obtained from the statistical office

of Japanese Government.

remove all objects before used.

> rm(list=ls())

read data

> x <- read.csv("./Data/JMA_Consume.csv",header=TRUE)

check the data

Temp = air temp (degC). Watermelon, Icecream, Chinese Noodle are in unit of JPY.

> head(x)

 Mon Day Temp Watermelon Icecream ChineseNoodle

1 7 1 23.96667 6.90 25.88 9.73

2 7 2 26.61333 10.16 36.90 8.13

3 7 3 25.44667 7.33 33.15 12.61

4 7 4 23.40667 13.34 39.25 25.93

5 7 5 23.74000 12.16 41.02 33.77

6 7 6 23.56667 6.74 18.88 7.80

pch=16 means plot filled circle

> plot(x$Temp,x$Watermelon, col="red", pch=16)

We get a scatter plot between air temperature and consumption of watermelon in Japan (Fig.

8, left). It is clearly showed that most of people tend to buy watermelon when air temperature

was high. Similar result is also true for Ice Cream. On the contrary, there is no linear relation

between air temperature and consumption of Chinese Noodle (Fig. 8, right).

Fig.8. Scatter plot between air temperature and consumption of watermelon (left) and
Chinese Noodle (right) in Japan.

12

Let’s evaluate how linearly associated between watermelon and air temperature using with

“cor.test()” function.

> cor.test(x$Temp,x$Watermelon)

 Pearson's product-moment correlation

data: x$Temp and x$Watermelon

t = 7.7753, df = 60, p-value = 1.185e-10

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 0.5572856 0.8141508

sample estimates:

 cor

0.7084439

The “cor.test()” calculate “correlation coefficient”, and statistical significance also evaluate.

Statistical test for correlation coefficient evaluate “correlation coefficient is 0 (zero)” or not.

The result of “cor.test()” showed that correlation coefficient between air temperature and

consumption of watermelon is 0.708. Further, p-value is 1.185e-10. If we set a significance

level of 0.05, the p-value is smaller than 0.05. So, the correlation coefficient is statistically

different from 0.

Let’s move another example. We will revisit well known relationship between sea surface

temperature in the tropical Pacific and sea level pressure index produced from observations

at Darwin, Australia and Tahiti Island (Southern Oscillation Index; SOI). Nino 3.4 index is a

measure of activity of El Nino/La Nina phenomenon, which is regional average of sea surface

temperature 5°S-5°N, 170°W-120°W. When Nino 3.4 is higher (lower) than 0.5 (-0.5) °C and

continue 5 months, we consider El Nino (La Nina) event has occurred. SOI is difference

between Tahiti and Darwin (Tahiti minus Darwin). When La Nina (El Nino) event occur, SOI

is positive (negative).

Fig. 9. Schematic figure for El Nino and La Nina condition (NOAA/CPC).

13

At first, a 5-month running mean applied to “nino 3.4” and SOI time series. Then the boreal

winter season (Dec – Feb) mean were prepared. Data files were “./Data/nino_DJF.csv”,

“./Data/soi_DJF.csv”, respectively.

> x <- read.csv("./Data/nino_DJF.csv", header = TRUE)

> head(x)

x is a temporal data frame. Nino3.4 index is available from 1951.

On the contrary, SOI are available from 1952. So, delete Nino3.4 data of 1951.

delete first row

> nino <- x[-1,]

> head(nino)

 YEAR NINO34 ANOM

2 1952 26.92 0.30

3 1953 26.86 0.23

4 1954 27.08 0.46

5 1955 25.60 -1.02

6 1956 25.29 -1.33

7 1957 26.13 -0.50

> rm(x)

read SOI index : Dec-Feb mean.

> soi <- read.csv("./Data/soi_DJF.csv", header = TRUE)

> head(soi)

 YEAR SOI

1 1952 -0.56000000

2 1953 -0.26666667

3 1954 0.02666667

4 1955 0.66666667

5 1956 1.27333333

6 1957 0.50666667

> plot(nino$NINO, soi$SOI, pch=16, col="red")

> cor.test(nino$NINO, soi$SOI)

 Pearson's product-moment correlation

data: nino$NINO and soi$SOI

t = -16.157, df = 57, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

Fig. 10 Scatter plot between
Nino3.4 index and SOI index

14

 -0.9432223 -0.8462118

sample estimates:

 cor

-0.9059704

It is obvious that there is very strong linear relationship between Nino 3.4 index and SOI

index for the period 1952-2010 (Fig. 10). When Nino 3.4 index is strongly low, SOI index is

simultaneously high (La Nina condition). On the contrary, Nino 3.4 is high with low SOI (El

Nino). Linear relationship between Nino 3.4 and SOI is -0.906 with very low p-value (2.2e-

16).

Exercise.

A. Evaluate linear association between rainfall at Darwin and SOI. Monthly rainfall at

Darwin are in “Rain_Darwin_2.csv”. SOI are in “soi_std_3.csv”.

B. Evaluate linear association between monthly average surface air temperature at Tokyo

and Nino 3.4 index. Meteorological data at Tokyo are in “JMA_Tokyo_2.txt”, and Nino 3.4

are in “ersst3b.nino34_2.csv”.

7. Sliding correlation

Sliding correlation (moving window correlation) is used for investigation of temporal

variation in linear relationship between two variables. In climatologically, ENSO and other

largescale phenomena shows a decadal scale variability. Therefore a linear relationship

between ENSO and rainfall at some region may change from an epoch to another epoch. In

this section, we will calculate sliding correlation.

In this section we will use an R package

“dplyr”. To install required R package,

setup CRAN mirror site (Fig. 11). Select

[Package] in menu bar, window “HTTPS

CRAN mirror” will pop up. Select “HTTP

mirrors” and push “OK”. New window

“HTTP CRAN mirror” will open. Select

“JAPAN (Tokyo)”. Back to R console, please

type following command, then push return

key.

> install.packages(“dplyr”)

“dplyr” is a very useful package for

Fig.11 Choose “(HTTP mirrors)”, then choose
again “Japan (Tokyo)”.

15

aggregation / searching large data.

When using “dplyr”, some tricky code will introduce. Other programing language use “y = x”,

this means “x” substitute to “y”. However, “dplyr” use another syntax. “x -> y”, this means “x”

substitute to “y”. In addition, “%>%” can be use in script. These syntax called as “chain

syntax”.

We will use monthly rainfall data at Kohn Kaen, northeast Thailand.

> library(dplyr)

> x <- read.table("./Data/Rain_TMD_KhonKaen_2.txt", header = TRUE)

> head(x)

 YEAR MON RAIN

1 1951 1 9.8

2 1951 2 23.5

3 1951 3 22.9

4 1951 4 80.7

5 1951 5 181.7

6 1951 6 208.1

pick up rainfall data in Marth and April. Picked data substitute to "y".

chain syntax %>% will be used.

first select March/April data, then data after 1952 are picked up.

> filter(x, MON>=3&MON<=4) %>% filter(YEAR>=1952) -> y

group_by(YEAR) : It means for "each YEAR"

summarize(RR_MA = sum(RAIN)) : It will gets rainfall in March + April

Total rainfall during March/April is stored in data frame ‘rr’

> y %>% group_by(YEAR) %>% summarize(RR_MA = sum(RAIN)) -> rr

> head(rr)

Source: local data frame [6 x 2]

 YEAR RR_MA

 (int) (dbl)

1 1952 187.3

2 1953 123.6

3 1954 40.6

4 1955 84.0

5 1956 128.0

6 1957 164.0

plot time series

> plot(rr$YEAR, rr$RR_MA, type="h")

Fig. 12 Time series of RR_MA

16

write data frame ‘rr’ to CSV file.

> write.csv(rr, "./Rain_KK_MA.csv", row.names = FALSE)

delete all object

> rm(list=ls())

>

read Nino3.4 DJF data

> x <- read.csv("./Data/nino_DJF.csv", header = TRUE)

> nino <- x[-1,]

> head(nino)

 YEAR NINO

2 1952 0.3760000

3 1953 0.1966667

4 1954 0.2913333

5 1955 -0.9933333

6 1956 -1.3673333

7 1957 -0.3813333

> rr <- read.csv("./Rain_KK_MA.csv")

> head(rr)

 YEAR RR_MA

1 1952 187.3

2 1953 123.6

3 1954 40.6

4 1955 84.0

5 1956 128.0

6 1957 164.0

check length of both data

> length(nino$NINO)

[1] 59

> length(rr$RR_MA)

[1] 59

include a script which get statistical significant correlation coefficient at 5% point

> source("./MyCorLimit.R")

include a sliding correlation script

> source("./MySlidCor.R")

set window size : 13-year window

> window <- 13

calculation of sliding correlation

> res <- MySlidCor(nino$NINO, rr$RR_MA, window)

17

check first 10 rows in ‘res’. ‘res’ is matrix

> head(res,n=10)

 corVal pVal

 [1,] NA NA

 [2,] NA NA

 [3,] NA NA

 [4,] NA NA

 [5,] NA NA

 [6,] NA NA

 [7,] -0.1859529 0.5430217

 [8,] -0.4121778 0.1616505

 [9,] -0.3366898 0.2606415

[10,] -0.1881112 0.5382650

set significance level at 0.05.

> alpha <- 0.05

calculate limit of correlation coefficient

> cor.limit <- MyCorLimit(window, alpha)

> cor.limit

[1] 0.5529427 -0.5529427

If correlation coefficient is larger (smaller) than 0.553 (-0.553),

correlation coefficient is different from ‘0’(statistically significant)

get year

> years <- rr$YEAR

conbine year and res, then create new data frame ‘res2’

> res2 <- as.data.frame(cbind(years,res))

check ‘res2’, first 10 rows. NA means “No data”

corVal is correlation coefficient

pVal is p-value

> head(res2,n=10)

 years corVal pVal

1 1952 NA NA

2 1953 NA NA

3 1954 NA NA

4 1955 NA NA

5 1956 NA NA

6 1957 NA NA

7 1958 -0.1859529 0.5430217

18

8 1959 -0.4121778 0.1616505

9 1960 -0.3366898 0.2606415

10 1961 -0.1881112 0.5382650

plot time series of correlation.

> plot(res2$years,res2$corVal, type="l", ylim = c(-0.8,0.2), xlab = "YEAR", ylab =

"Correlation Coef.", col = "red", lwd = 2)

add horizontal zero-line

> abline(h=0)

add horizontal line of upper limit of correlation coef.

> abline(h=cor.limit[1], col = "blue")

add horizontal line of lower limit of correlation coef.

> abline(h=cor.limit[2], col = "blue")

plot save to PNG file

set resolution in ppi. Width and length are Inch.

> ppi <- 300

> png("fig_KohnKane_cor.png", width = 6 * ppi, height = 3 * ppi, res = ppi)

> plot(res2$years, res2$corVal, type = "l", ylim = c(-0.8,0.2), xlab = "YEAR", ylab =

"Correlation Coef.", col = "red", lwd = 2)

> abline(h=0)

> abline(h=cor.limit[2], col = "blue")

output to PNG is finished by dev.off(). Do not forget this function.

> dev.off()

write out the results to CSV file

> write.csv(res2, "./res_KohnKane_cor.csv", row.names = FALSE)

QUIT R

> quit()

In this example, we calculated the

correlation coefficient between

March-April total rainfall at Kohn

Kaen, Thailand and previous DJF

mean Nino 3.4 Index with 13-years

sliding window. Figure 13 shows the

result. A horizontal blue line is limit

of correlation coefficient with degree

of freedom = 11. Correlation

coefficient is statistically different

from ‘0’ at 0.05 % level.

Fig. 13. 13-years window sliding correlation
between March-April rainfall at Kohn Kaen,
Thailand and previous winter (Dec-Feb) mean
Nino 3.4 index.

19

It is also note that window size can be arbitrarily

chosen, but should be odd number.

El Nino / La Nina phenomenon occurred 5 to 9

times for each decade (Table 1). So, we can

choose 13-year window. If the phenomena only

occur every 15 year, we cannot choose 13-year

window size.

You need to consider a characteristics of a

phenomena’s variability.

Appendix A. List of R scripts.

Name Description

MyCorLimit.R Calculate upper/lower limit of correlation coefficient.

x <- MyCorLimit(n, alpha)

<In> n : length of vector (number of pairs), alpha : significance level,

usually uses 0.05 or 0.01.

<Return> vector of upper/lower limit of correlation coefficient.

MyRunAve.R Calculate running average

y <- MyRunAve(x, window)

<In> x : a vector of observations, window : size of window (e.g. if

window=11, 11-years running average.)

<Return> y : vector of running averaged observations

MySlidCor.R Calculate sliding correlation.

z <- MySlidCor(x, y, window)

<In> x : a vector of observations. y : another vector of observations.

window : size of sliding window (e.g. if window=13, 13-years sliding

correlation coefficient.

<Return> z : matrix of corVal and pVal. corVal are time series of the

sliding correlation coefficient. pVal are time series of the calculated p-

values.

Table 1. Number of El Nino / La Nina
years defined by NOAA/CPC.

Decades El Nino La Nina

1950’s 5 3

1960’s 3 2

1970’s 4 5

1980’s 3 2

1990’s 3 3

2000’s 4 2

20

Appendix B. List of data file.

Name Data

ersst3b.nino34_2.csv Monthly Nino3.4 index provided by NOAA/CPC.

NINO3.4 : Sea surface temperature.

ANOM : Anomaly of NINO3.4

nino.runave : 5-month running average of ANOM.

JMA_Anomaly.csv Climatological annual anomaly time series compiled

by JMA.

GL_TEMP: Global surface air temperature anomaly.

NH_TEMP: Northern Hemisphere temp. anomaly.

SH_TEMP: Southern Hemisphere temp. anomaly.

JP_TEMP: Annual mean temperature anomaly in

Japan. Compiled from 15 JMA stations.

JP_RAIN: Annual total precipitation anomaly in

Japan. Compiled from 51 JMA stations.

JMA_Consume.csv Daily mean temperature and consumption value in

Japan during July-August 2015. Daily consumption

values were provided by e-stat of Japan.

Temp: Daily mean temperature. The data were

averaged value of 15 JMA stations.

Watermelon: consumption value of watermelon.

Icecream: consumption value of ice cream.

ChineseNoodle: consumption value of Chinese

noodle.

JMA_Kyoto_2.txt Monthly mean maximum / average / minimum

temperature, and monthly total precipitation at

JMA Kyoto.

TAVE: Monthly mean average temperature.

TMAX: Monthly mean maximum temperature.

TMIN: Monthly mean minimum temperature.

RAIN: Monthly total precipitation.

JMA_Tokyo_2.txt Same as JMA_Kyoto_2.txt, but for JMA Tokyo.

nino_DJF.csv Boreal winter (Dec-Feb) mean of 5-month running

averaged Nino3.4 anomaly.

NINO: Nino3.4 DJF mean.

Rain_Darwin_2.csv Monthly total precipitation at Darwin, Australia.

Precipitation data were obtained from BOM,

21

Australia.

RAIN: Monthly total precipitation.

Rain_TMD_Ann.csv All Thailand mean annual rainfall. Original data

were obtained from TMD. Mean annual rainfall time

series were simple arithmetic average of 47 stations.

RR: All Thailand mean annual rainfall.

Rain_TMD_KhonKaen_2.txt Monthly total precipitation at Khon Kaen, Thailand.

Precipitation data were obtained from TMD,

Thailand.

RAIN: Monthly total precipitation.

Rain_TMD_UbonRatchathani_2.txt Same as Rain_TMD_KhonKaen_2.txt, but for Ubon

Ratchathani, Thailand.

Rice_Japan.csv Time series of area of paddy field, rice production,

and yield in Japan. Data were obtained from e-stat,

Japan.

Area: unit is ha.

Production: unit is t.

Yield: unit is kg/10a.

Rice_Thailand.csv Time series of area of harvested are, rice production,

and yield in Thailand. Data were obtained from

FAO, and supplemented from “World Rice Statistics”

by Palacpac (1977).

Area: unit is ha.

Production: unit is t.

Yield: unit is kg/10a.

soi_DJF.csv Boreal winter (Dec-Feb) mean SOI. SOI was 5-

month running averaged first. SOI was obtained

from NOAA/CPC.

SOI: Southern Oscillation Index.

soi_std_3.csv Monthly SOI and 5-month running averaged SOI.

SOI was obtained from NOAA/CPC.

SOI: Southern Oscillation Index (Standardized)

soi.runave: 5-month running averaged SOI.

