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Overview

• Fukushima accident 

• Movement of 137Cs in soils

• Behavior of 137Cs in soils

• Molecular Interactions of Cs with clay 
minerals

Fukushima Accident

• Largest recorded earthquake in Japanese 
history (force of 9.0 Richters). 

• Largest Tsunami in Japan’s recorded history, 
30 ft high, struck that same northeastern 
shore. 

• That cooling failure resulted in the release of a  
large amount of radiation into the air, ocean, 
and groundwater.

• Development of new technology needed to 
remediate contaminated soil in Fukushima 
prefecture. 

http://www.rchoetzlein.com/theory/wp-content/uploads/2011/03/fukushima7.jpg
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Recent soil assays taken from different directions about 
1,000 m from the power station. 

http://www.tepco.co.jp/en/press/corp-com/release/betu11_e/images/110525e11.pdf

Recent soil assays

• Cs-137 ranges from 1.4 to 0.014 MBq/kg 
wet soil (1000 m from the power station)

• For comparison, the Chernobyl typical soil 
is around 0 3 MBq/m3 in 2002 which isis around 0.3 MBq/m3 in 2002, which is 
180 Bq/kg dry soil at 1700 kg/m3.

• http://www.energy.gov/news/documents/0
40711__AMS_Data_April_7__v3.pptx

Radiation Maps

• Result of an aerial survey by DOE NNSA 
with their special plane. 

• Collaboration with Japan’s Nuclear and 
Industrial Safety Agency (NISA)Industrial Safety Agency (NISA)

• Some contamination extends beyond the 
30 km limit.

• Aerial Measuring Systems have totaled more 
than 262 flight hours in support of aerial 
monitoring operations

• NNSA’s Consequence Management 
R T h ll t dResponse Teams have collected 
approximately 100,000 total field 
measurements taken by DOE, DoD, and 
Japanese monitoring assets

• 240 total air samples taken at US facilities 
throughout Japan undergoing lab analysis in 
the US 

Guide to Interpretation

• US radiological assessments are composed of aerial 
and ground measurements and indicate radiation 
levels from material that has settled on the ground

• Each measurement corresponds to the radiation a 
person receives in one hour at that location.  AMS 
data is presented as exposure rate 1 meter from the 
ground at the time the measurements occurred

• All measurements outside the Fukushima power plant 
site boundary are below 0.013 REM per hour – a low 
but not insignificant level
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Assessment:  Measurements gathered 
through April 6 continues to show:

• Rapid decay of deposited radiological material indicating 
Radioiodine is the most significant component of dose

• Radiation levels consistently below actionable levels for evacuation 
or relocation outside of 25 miles; and levels continue to decrease 

• No measurable deposit of radiological material since March 19
US bases and facilities all measure dose rates below 32

14

• US bases and facilities all measure dose rates below 32 
microrem/hr (32 millionths of a REM)  – a level with no known health 
risks

• Agricultural monitoring and possible intervention will be required for 
several hundred square kilometers surrounding the site:

• Soil and water samples are the only definitive method to 
determine agricultural countermeasures

• Ground monitoring can give better fidelity to identify areas 
that require agricultural sampling

Context

• The Nuclear Regulatory Commission estimates that 
the average American absorbs 620 mRem a year* (or 
0.071 mRem/hour)

• An average transatlantic flight produces an exposure 
of 2.5 mRem*

• A typical chest x ray produces 10 mRem per image• A typical chest x‐ray produces 10 mRem per image

• EPA guidelines call for public health actions if 
exposure exceeds 1000 mRem over 4 days

• Source: NRC: http://nrc.gov/images/about‐nrc/radiation/factoid2‐lrg.gif

http://www.iaea.org/newscenter/news/tsunamiupdate01.html

Projected dose map

• Dust carried I-129 would dominate in first 
few months, 

• Followed by Cs-137 on dust 

F ll d b di t hi f td• Followed by direct shine from outdoor 
exposure. 

• Soil (and dust) is the primary source term



5/31/2011

4

Fukushima contamination 
comparison

• At first, shine comes from everywhere. 
• In Chernobyl, the roads became clear after a 

while and so only the bare soil areas show 
contamination now. 

• There are areas on Earth where natural 
background radiation far exceed the 
Fukushima contamination. 

• Example:  A monazite black sand beach in 
Guarapari Brazil results in about 400x 
average dose for people living there. 

137Cs in Soils:  The Role of Clay 
Minerals

• Clay minerals (layer silicates; phyllosilicates) 
– Small particle size (< 2 m)

– High surface area (can exceed 750 m2/g

– One of nature’s most important nanomaterials

– Clay minerals have a very high affinity of 137Cs.

– Have overall negative charge

• Clay minerals control many aspects of the fate and 
transport of 137Cs in soils.

• Other phases may be important:
• Carbonates and Soil Organic Matter

137Cs+

Charge = +1
Large size
L E th l f h d tiLow Enthalpy of hydration 
Small hydrated radius

Movement of 137-Cs in soils

• Vertical migration of 90-Sr and 137-Cs was investigated 
in an unsaturated soil layer in the Nishiyama area of 
Nagasaki.Nagasaki. 

• The in situ migration rates of 90-Sr and 137- Cs were 
estimated to be 4.2 mm/yr and 1.0 mm/yr

• Fallout of 137-Cs and 90-Sr have remained in the 
surface soil for a long period of time

• More than 95% of 137Cs was to a depth of 0.1 m, no 
137Cs was detected in groundwater.

• 90Sr was more mobile.
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Vertical migrations of 137Cs

• Slow vertical movement of 137-Cs in soils 
and sediments

• Next figure – compare 137-Cs to 99-Tc or 
3 H3-H 

137Cs 99Tc 3H

General Behavior of 137Cs in soils

• High selectivity

• Sorption models

• Kinetics

Research has shown that a small 
fraction of the ‘active sites’ on clay 
mineral have a very high affinity for 137Cs

Ion Exchange

• Ion Exchange

• 2 Cs+ + Ca X2 = 2CsX + Ca2+

   
  22

22
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Ca2+
Ca2+
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Cation exchange of Ca2+ by Cs+

Ca

Cs+

Johnston et al., Langmuir 17(12) 3712-3718



5/31/2011

6

A small number of 
clay sites have a very 
high affinity for Cs

Note that the y-axis is 
l tt d l l !plotted on a log scale!

Main point

• Some sites on clay matrices have a very 
high affinity for Cs+.

• However, these sites are very limited.

Th hi h t it h L K f• The highest energy sites have a Ln Kc of 
33.8 (Gexchange = 40 kJ/mol)

• But represent only a very trace fraction of 
the total sites:  
– 0.0002% of total sites!

High Kd value means that Cs g d

is partitioned into the soil. 

Introduction to the nanoscale
varchitecture of clay minerals
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How does 137Cs+ bind to clay 
particles?p

J. P. McKinley et al.,Environ.Sci.Technol. 
35 (17):3433-3441, 2001.

• The retention of 137Cs+ by sediments and 
phyllosilicates has been intensively studied 
since anthropogenic 137Cs+ became a concern 
for environmental and health reasons .

• Sorption and desorption were observed to 
proceed in two steps: 

– rapid initial reaction 

– followed by slower continued reaction (or 
even renewed sorption, in the case of 
desorption). 

Proposed model.  Three 
different chemical surface sites:

• Nonselective (fixed charge) exchange 
sites on phyllosilicate surfaces; 

• Selective frayed edge sites (FES) on 
micas, formed by the removal of K+ 
from the phyllosilicate interlayers

• Interlayer sites in micas, populated by 
the diffusion of 137Cs from FES. 

Nonselective exchange sites

O
Si

.
Interlayer 

cation
Interlayer 
water

~ 0.96 nm 
thick

~0 to 4 nm

A.  OHstructure

B.  OHwater2 nm

O, H
Al, Mg, Fe(II, III), Li+

O, H

O
Si

Localized charge in tetrahedral layer (Al3+ for Si4+)~ 50 nm

Ca2+
Ca2+

Cs+

Cation exchange of Ca2+ by Cs+

Ca

Cs+

Johnston et al., Langmuir 17(12) 3712-3718



5/31/2011

8

Isomorphous Substitution of Mg → Al in the octahedral layer 
(montmorillonite)

0.3 nm

Isomorphous Substitution of Al → Si in the tetrahedral layer 
(saponite)

0.7 nm

Figure 8

Hydrophilic Sites
(red)

Hydrophobic sites
(grey)

Selective frayed edge sites 
(FES) on micas
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Sorption behavior linked to specific 
exchange sites: 

• Nonselective exchange sites weakly retained 
137Cs+, which could be readily and rapidly 
desorbed. 

• The FES sites rapidly and energetically retained p y g y
Cs+ and also slowly desorbed Cs+, 

• In most experimental studies, complete recovery 
of sorbed Cs+ was not achievable, and this 
unrecovered Cs+ was considered to be 
“irreversibly sorbed” or “fixed”. 

Kinetics of Cs exchange
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Molecular Interactions of 
137Cs+ with Clay Mineralsy
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Probing the nanoscale architecture 
v

g
of clay minerals and hydrous oxides

Distance between charge 
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Figure 17
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Figure 18
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