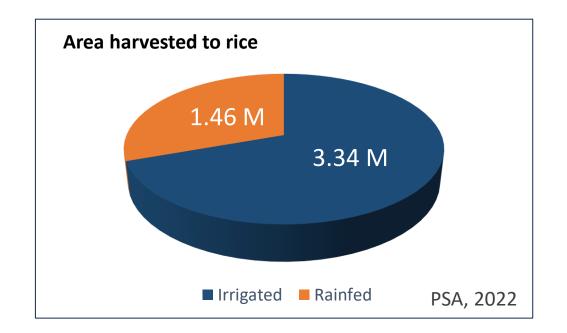
Application of rice husk ash and water management affect the GHG emission and water productivity in rice

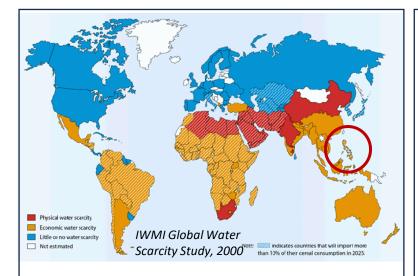

Kristine Samoy–Pascual*, Takeshi Tokida, Filomena S. Grospe, Mark Everson Casil, Nerissa C. Ramos, Evangeline B. Sibayan, Masaru Mizoguchi⁴

*JSPS Ronpaku Fellow, The University of Tokyo

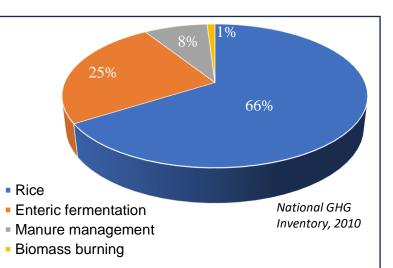
J-SRI Meeting 06|17|2024

Introduction | Rice

Grown in 4.8 Million ha in the Philippines with 19.8 Million metric tons production.


Common practice: soil puddling and maintaining flooded conditions throughout the crop duration.

Key issues in rice production

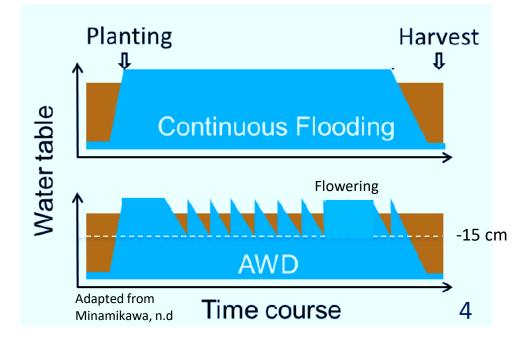

Pressure to produce more food (rice)

112.9 Million Population in the Philippines with 1.3% annual growth rate (2023, PSA)

Irrigated rice will suffer some degree of water scarcity

- High cost of irrigation development in the Philippines
- Water use competition: Increasing demand for domestic water supply for example in the domestic supply in Manila

Rice is the largest source of GHG emissions in the agricultural sector


22.4 Million ton CO₂e in 2010 (NGHI, 2010)

Alternate-wetting and drying (AWD)

- A low-cost water-saving technique in rice that involves drying the field intermittently at the right time.
- A "safe" AWD is implemented at -15 cm threshold level for irrigation
- Effective in mitigating CH₄ emissions due to soil aeration

Information on the site-specific feasibility in terms of GHG emission, water saving, & rice productivity is limited.

Rice husk ash (RHA) is generated from burning rice husks from several cogeneration–power plants

Objective

This study explores the application of RHA in paddy soils under varying water management in rice.

Materials and Methods

Methods: (2-year field experiments)

- Compared AWD and continuous flooding with different rates of rice husk ash (RHA) at 0, 10, 20, and 30 t/ha: Split-plot design
- Incorporated RHA every dry season
- In 2016 DS- stubbles were dry-tilled before wetland preparation
- Transplanted 21-day old rice seedlings
- Seedling spacing: 20 x 20 cm

Measurements

- Measured the greenhouse gas emissions (CH₄ and N²O emissions)
- Soil properties at the topsoil (0–10 cm)-
- Grain yields, water use, and water productivity

Table 1. Physicochemical properties of RHA

Parameters	Values		
Moisture%	1.58		
Volatile combustible matter %	1.73		
Ash %	94.1		
Fixed C (g kg ⁻¹)	41.5		
Total C (g kg ⁻¹)	42.0		
Total H (g kg ⁻¹)	0.16		
Total N (mg kg ⁻¹)	1.49		
Available K (g kg ⁻¹)	5.7		
Available P (mg kg ⁻¹)	73.9		
pH	10.7		

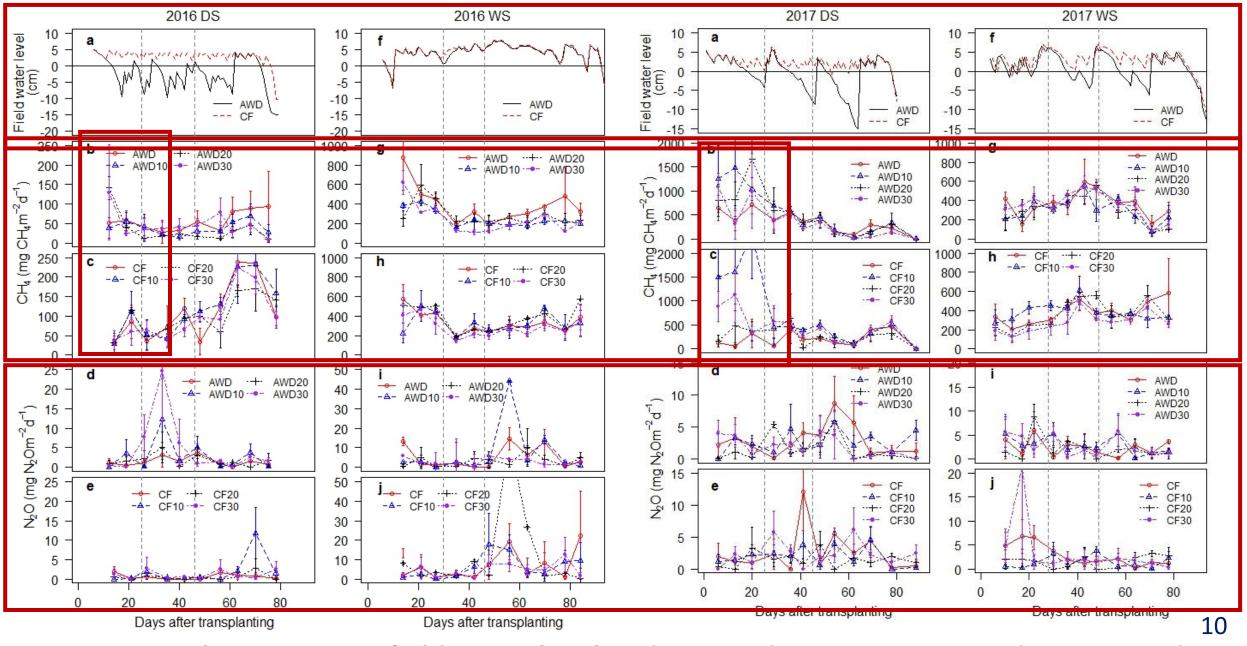


Fig. 1 Seasonal variations in field water level and CH4 and N2O emission under AWD and CF

Table 2. Soil properties in the topsoil as affected by cropping season,water management and RHA rate.DS- dry season; WS- wet season

1.20 b				mg kg ⁻¹	
1 20 h					
1.20 0	6.17 b	18.6 a	27.1 a	147.6 a	
1.36 a	5.88 c	17.7 b	10.6 b	107.7 c	
1.19 b	6.31 a 13.6 c		5.7 c	114.2 b	
1.35 a	6.52 a	12.3 d	2.4 d	56.9 d	
1.09 b	6.24	16.1	16.4 a	130.9 a	
1.36 a	6.20	15.0	6.5 b	82.3 b	
1.25	6.20	15.5	11.0	108.0	
1.30	6.24	15.6	11.9	105.2	
			C	Contraction of the second s	
1.30	6.17	14.5 b	5.1 c	77.5 с	
1.31	6.23	15.6 a	7.7 bc	92.1 b	
1.28	6.24	15.9 a	13.0 ab	121.4 a	
1.21	6.23	16.2 a	19.9 a	135.5 a	
	1.19 b 1.35 a 1.09 b 1.36 a 1.25 1.30 1.30 1.31 1.28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.19 b $6.31 a$ $13.6 c$ $5.7 c$ $1.35 a$ $6.52 a$ $12.3 d$ $2.4 d$ $1.09 b$ 6.24 16.1 $16.4 a$ $1.36 a$ 6.20 15.0 $6.5 b$ 1.25 6.20 15.5 11.0 1.30 6.24 15.6 11.9 1.30 6.17 $14.5 b$ $5.1 c$ 1.31 6.23 $15.6 a$ $7.7 bc$ 1.28 6.24 $15.9 a$ $13.0 ab$	

		Grain	Water	Water				
		Yield	use	Productivity	CH_4	N_2O	GWP	GWPy
Treatments		Mg ha ⁻¹	m ³ ha ⁻¹	kg m ⁻³	kg CH₄ ha⁻ ¹	kg N2O ha ⁻¹	kg CO2 eq ha ⁻¹	Mg CO ₂ ha ⁻ Mg ⁻¹ grain
Cropping Season (CS)						>100	reduction	sof
2016 DS		6.60 a	9301	0.94	51.1 b			0.34 c
2016 WS		5.49 c	9677	0.57	236.9 a	CH4	4 emissior	S .77 ab
2017 DS		5.96 b	8883	1.23	342.9 a	1.85 b	12210 a	2.06 a
2017 WS				0.69	~ ~~~	1 (01)	8625 b	1.50 b
Season (DW)		39%	s water	1	10% reduc	tion		
DS			vinge	1.08 a			7218	1.20
WS		sa	vings	0.63 b	f CH ₄ emis	sion	9119	1.63
Water (W)						ſ		
CF		6.01	11399 a	0.58 b	229.0	2.83	8628	1.47
AWD		5.92	6953 b	1.14 a	206.0	2.37	7710	1.37
Rice husk ash (RHA)							•	
0		5.92	9980	0.87	204.7	2.98 a		1 20
10		6.10	8748	0.91	257.3	2.73 ab	8-22% r	eduction
20		5.91	9307	0.80	212.4	2.36 b		
30		5.92	8670	0.84	195.6	2.33 b	OT N ₂ U	emission
Source of variation	df						L	
Cropping season (CS)	3	* *	ns	**	* * *	* *	***	**
Dry or Wet (DW) ^a	1	* *	ns	**	**	*	**	**
W	1	ns	**	***	t	ns	ns	ns
RHA	3	ns	ns	ns	ns	*	ns	ns
$\mathbf{W} imes \mathbf{R} \mathbf{H} \mathbf{A}$	3	ns	ns	Ť	ns	ns	ns	ns
$W \times CS$	3	ns	**	***	ns	ns	ns	ns
$RHA \times CS$	9	ns	Ť	**	Ť	ns	*	ns
$\mathbf{W} \times \mathbf{RHA} \times \mathbf{CS}$	9	ns	ns	Ť	ns	*	ns	ns
$W \times DW$	1	ns	**	**	ns	ns	ns	ns
RHA × DW	3	ns	Ť	-	ns	ns	ns	ns
$W \times RHA \times DW$	3	ns	ns	ns	ns	ns	ns	ns

Table 3. Seasonal grain yield, water use, water productivity, CH_4 and N_2O emission, and GWP and yield scaled GWP as affected by cropping season, water management, and RHA rate.

Different characters indicate significant treatment differences. df: degrees of freedom. ^aSubdivision of variation among CSs. P < 0.10, *P < 0.05, ** P < 0.01, *** P < 0.001.

Conclusions

- The primary RHA effects mitigated N₂O emissions, while AWD had only marginal effects on CH₄ emissions but maintained grain yield, and improved water productivity under our experimental conditions.
- The low total GWP in the first cropping season suggests that the additional mitigation measures of RHA application and water management need to be associated with the proper management of rice stubbles first.

Samoy-Pascual, K., Tokida, T., Grospe, F.S. *et al.* Rice husk ash and water management affect the GHG emission and water productivity in rice. *Nutr Cycl Agroecosyst* (2024).

https://doi.org/10.1007/s10705-024-10355-8

<u>Thank you.</u>

Recommendations

- Assess Regional Variability: Understand impacts in different agroecological contexts
- Evaluate Economic Feasibility: Consider costs and availability of RHA regionally
- Tailor Practices to Local Conditions: Customize approaches to maximize benefits and minimize trade-offs.