FIDRフォーラム ~<常識はずれ>の農法が支持されるワケ~

SRI農法はどう進化しているのか

一国際社会の評価とこれから一

豊穣の女神

Dewi Sri

右手に水

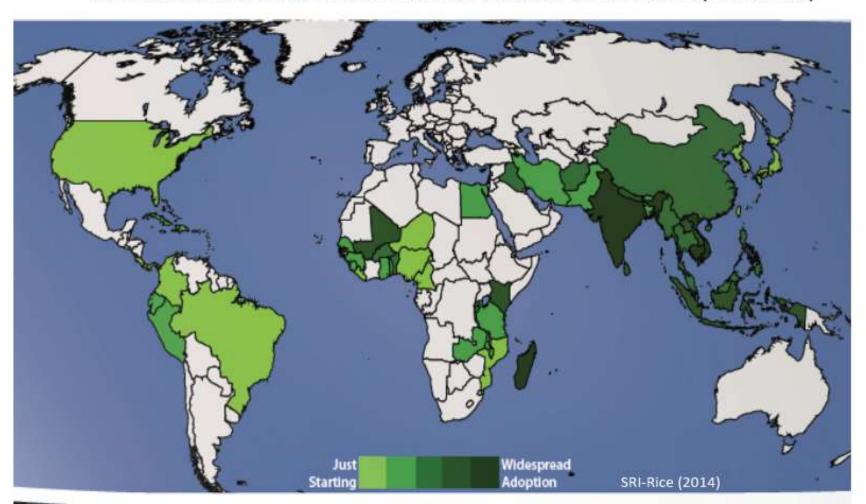
左手に稲

本日の内容

- 1. SRIのはじまりと広がり
- 2. SRIの効用と議論
- 3. 研究会、ネットワーク
 J-SRI研究会、国際ネットワーク、ASRIA
- 4. SRIの技術と普及手順
- 5. 我々は何をなすべきか

SRIとは(1)

le Système de Riziculture Intensive System of Rice Intensification



- SRI稲作は、ロラニエ(Fr. Henri de Laulanie)が 1983年に発明・実用化し、片山(Katayama Tsukuda、1951)理論に勇気づけられ、1993年 に論文を発表し、アポフ(Prof. Norman Thomas Uphoff)が1994年から検証を始め、1997年から 普及活動を行い、1999年にインドネシア・中国 で開始され、約50カ国で実践されている。
- 実施面積は、インドで60万へクタール、ベトナムで30万ha、カンボジアで6万ha等である。(「稲作革命SRIJ2011)
- しかし従来の農法を置き換えたわけではない。

各国への展開状況

Spread and Adoption of SRI

More than 10 million farmers benefit from SRI methods in 54 countries (end of 2013)

SRIの伝播と方式(山路の理解)

Madagascar → Prof. Uphoff →

```
    → Indonesia (4 or 5 principles)
    → Lao
    → Japan → Taiwan
```

→ Cambodia (12 targets)

from both → Viet Nam

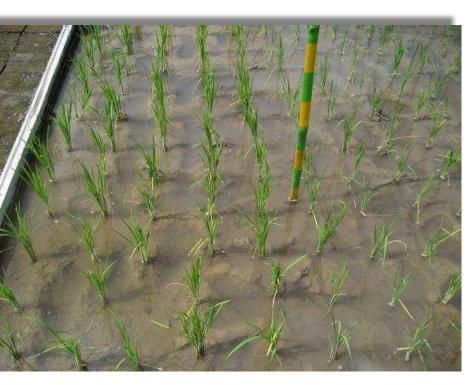
History & Site-Specific Science/Technique

SRIとは(2)

- SRIは、移植と水管理に特徴を持っている。
- すなわち、
 - ①出芽後1週間程度の乳苗を、
 - ②30cm程度の広い間隔で、
 - ③一本植えし、
 - ④栄養成長期に湛水せず 間断灌漑を行う。
- 丁寧な栽培管理と
 - ⑤有機肥料を原則に含む定義もある。 (Stoop et al., 2002)
- そして、高収量をもたらす(ことが多い)。

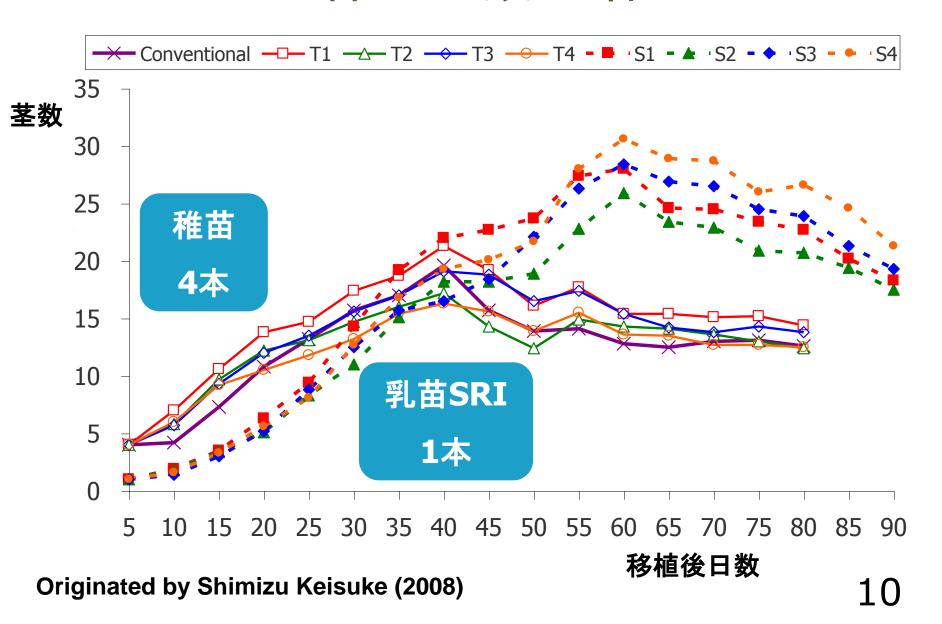
日本の標準的技術とSRI

	「標準的」技術	SRI
移植苗の葉齢	中苗(手植え)あるいは稚苗(田植機)	乳苗(手植え)
栽植密度 (1m2あたり)	15~20株前後	11株前後 疎植
一株苗数	4本程度	1(2)本を推奨
初期の水管理	栄養生長期間は湛水 状態	移植後早めに間 断灌漑開始



移植時の比較

(インドネシア試験プロット)



Conventional

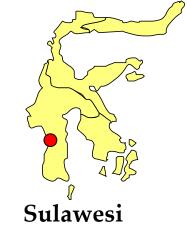
20cm x 20cm, 4~5 plants per hill

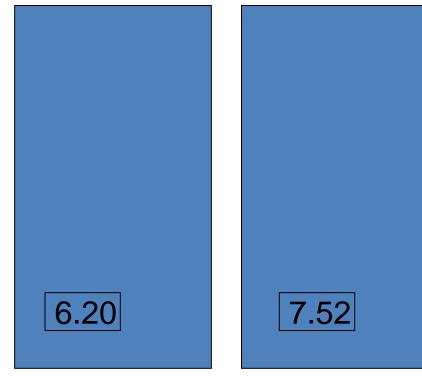
SRI 30cm x 30cm, 1 plant per hill

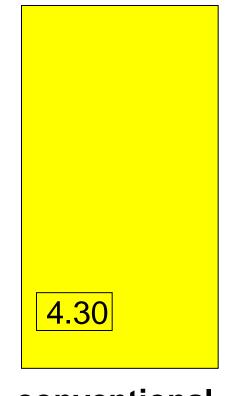
一株の茎数の増加

2. SRIの効用と議論

- 高収量
- 省資源(水、苗、肥料、、、)
- 強いイネが育つ
- GHG(温室効果ガス)の排出が減る


- 水田内でのばらつき
- 取り組む人のばらつき
- ・取り組みの持続性


SRI普及初期に報告されていた増収効果


国名	SRI (non SRI)	国名	SRI (non SRI)
Bangladesh	6.3 (4.9)	Madagascar	7.2 (2.6)
Cambodia	4.8 (2.7)	Myanmar	5.4 (2.0)
China	12.4 (10.9)	Nepal	8.5 (4.2)
Cuba	7.4 (4.3)	Philippines	6.0 (3.0)
India	8.0 (4.0)	Sierra Leone	5.3 (2.5)
Indonesia	7.4 (5.0)	Sri Lanka	7.8 (3.6)

佐藤周一(2006)、もみ重(トン/ha)

(私の)初の収量調査 (2006年5月)

SRI SRI conventional

7.53 7.82 5.42

単位:トン/ヘクタール

SRI収量をめぐる学会誌上での論争

EVIER

Agricultural Systems 79 (2004) 261-281

www.elsevier.com/locat

A critical assessment of the system of rice intensification (SRI)

A. Dobermann*

ELSEVIER

Agricultural Systems 71 (2002) 249-274

www.elsevier.com/locate/agsy

A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers

Willem A. Stoopa,*, Norman Uphoffb, Amir Kassamc

TER

Field Crops Research 88 (2004) 1-8

www.elsevier.co

Fantastic yields in the system of rice intensification: fact or fallacy?

J.E. Sheehy^{a,*}, S. Peng^a, A. Dobermann^b, P.L. Mitchell^c, A. Ferrer^a, Jianchang Yang^d, Yingbin Zou^e, Xuhua Zhong^f, Jianliang Huang^e

Field Crops Research 91 (2005) 357-360

Discussion

The SRI controversy: a response

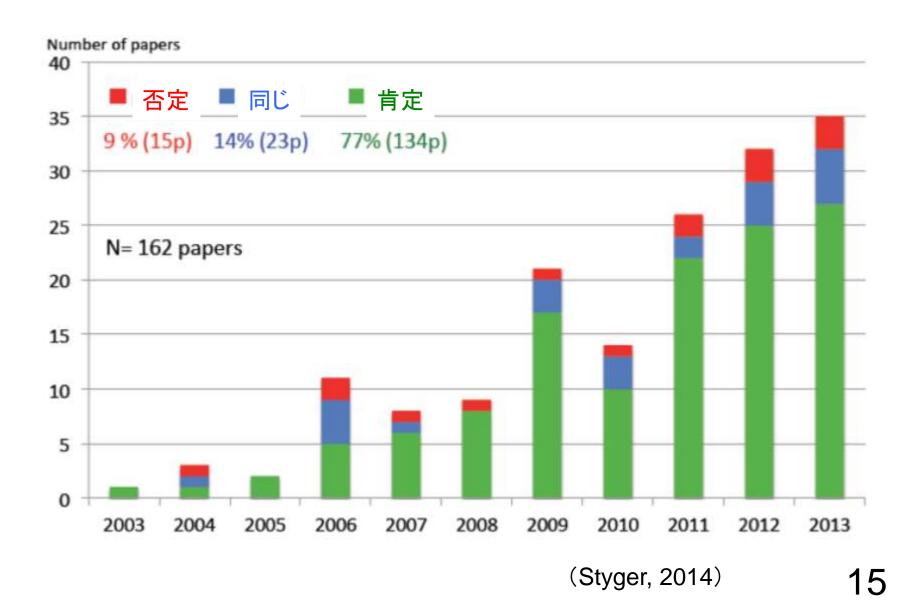
W.A. Stoop^{a,*}, A.H. Kassam^b

Field Crops Research 91 (2005) 355-356

Discussion

Curiosities, nonsense, non-science and SRI

J.E. Sheehy^{a,*}, T.R. Sinclair^b, K.G. Cassman^c

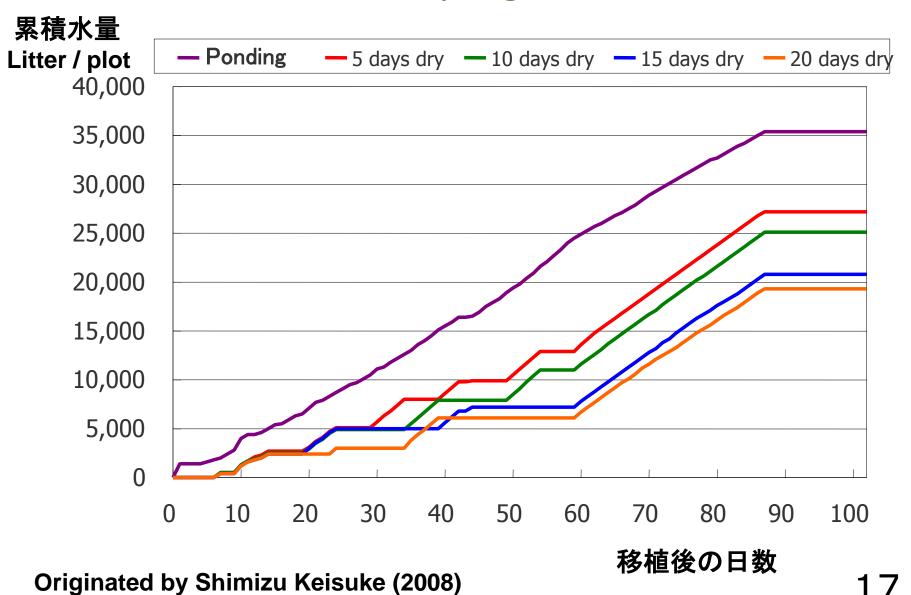

Field Crops Research 88 (2004) 9-10

Discussion

Agronomic UFOs

Thomas R. Sinclair^{a,*}, Kenneth G. Cassman^b

SRI増収効果についての肯定的 - 否定的論文数



「倍率」ではなく「差」で見た収量の比較

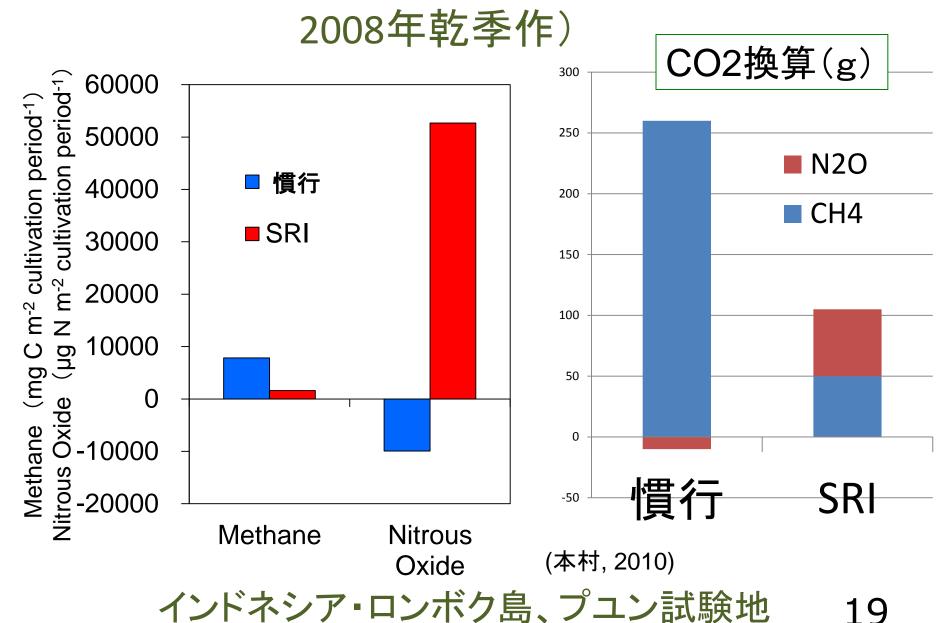
文献	試験地	区分	SRI 収量 (t/ha)	慣行収量 (t/ha)	SRI 增収幅 (t/ha)
Uphoff and Randriamharisoa, 2002	マダガスカル	農家圃場	8.4	2.5	5.9
Tsujimoto et al., 2009	マダガスカル	農家圃場	8.9	3.8	5.1
Uphoff and Randriamharisoa, 2002	マダガスカル	試験圃場	6.4	2.5	3.9
Shimizu et al., 2007	インドネシア	農家圃場	7.1	3.0	4.1
Satyaranayana et al., 2007	インド	農家圃場	8.8	6.3	2.5
Sinha and Talati, 2007	インド	農家圃場	6.3	4.2	2.1
Namara et al., 2003	スリランカ	農家圃場	5.5	3.8	1.7
Satyaranayana et al., 2007	インド	農家圃場	7.2	5.7	1.5
Tech, 2004	カンボジア	農家圃場	2.8	1.4	1.4
Sinha and Talati, 2007	インド	農家圃場	5.3	4.0	1.3
Vijayakumar et al., 2006	インド	試験圃場	5.7	4.8	0.9
Zhao et al., 2009	中国	試験圃場	7.3	6.4	0.9
Sheehy et al., 2004	中国	試験圃場	9.9	9.1	0.8
Chapagain and Yamaji, 2009	日本	試験圃場	7.4	7.4	0.0
Sheehy et al., 2004	中国	試験圃場	7.2	7.2	0.0
Islam et al., 2005	バングラデシュ	試験圃場	3.6	3.7	-0.1
Islam et al., 2005	バングラデシュ	試験圃場	7.5	7.7	-0.2
Stoop, 2002	コートジボワール	試験圃場	3.7	4.0	-0.3
Sheehy et al., 2004	中国	試験圃場	6.7	7.4	-0.7
Latif et al., 2005	バングラデシュ	試験圃場	9.2	10.0	-0.8
Shimizu et al., 2007	インドネシア	試験圃場	2.7	4.3	-1.6
			(Wakin	noto 2011) 16

16

累積灌漑水量(Puyung試験区、2007乾季作)

SRI稲は強風や湛水に強い

(ベトナムSRIのホームページより)

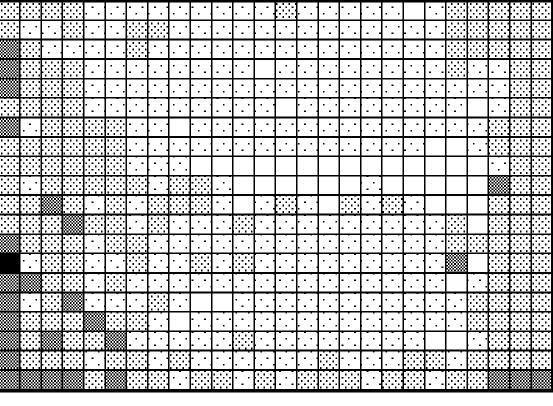

柏市大利根の実験田

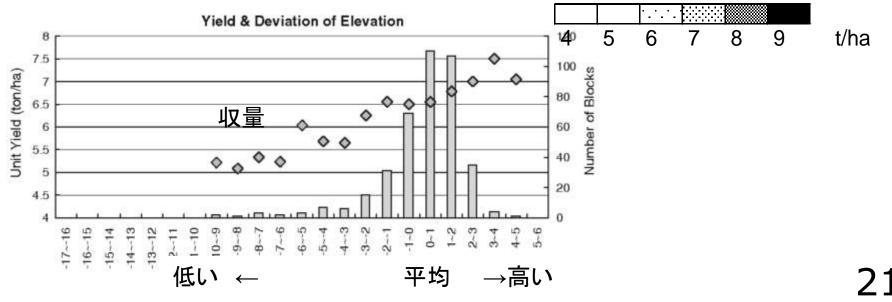
	2008			2009		
	収量	痛んだ 稲の率	水生 産性	収量	痛んだ 稲の率	
	t/ha	%	g/リッ トル	t/ha	%	
無機慣 行	7.37	93	1.23	6.84	90	
有機慣 行				6.48	0	
無機 SRI	7.41	7	1.74	5.92	20	
有機 SRI				6.59	0	

(Chapagain, 2010)

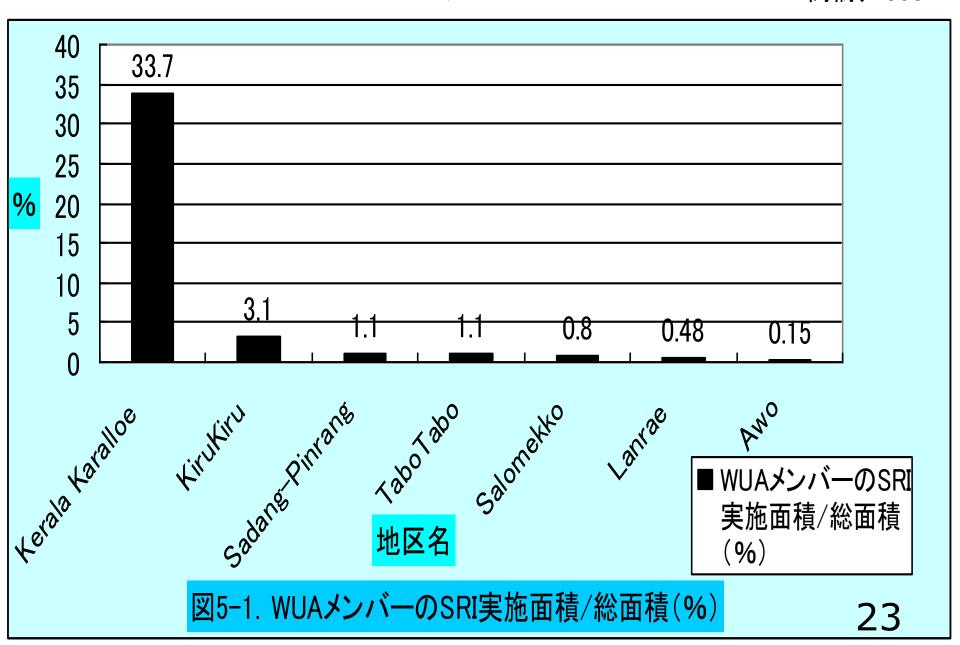
18

メタン、亜酸化窒素の放出量の累計(


株ごとのばらつき


	最大	平均	最小
草丈(cm)	115	108	88
穂数	21	15	4
穂重(g)	71.8	44.0	1.8
茎重(g)	259	104	19.5
根の本数	596	442	132
根の風乾重量(g)	3.8	2.2	0.7


水田1枚の中でのばらつき


東方インドネシアでのSRI稲作

(佐藤周一さんの現場、2005頃)

地区ごとの違い(面積率)

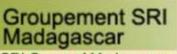
高橋、2008

3. 研究会、ネットワーク

- ・ コーネル大学(チームアポフ)
- J-SRI研究会(掏摸研究会ではない)
- ・ 各国の研究会

- Rice Congress
- ASRIA(アジアネットワーク)
- ・国際機関のサポート

24



SRI Group of Madagascar

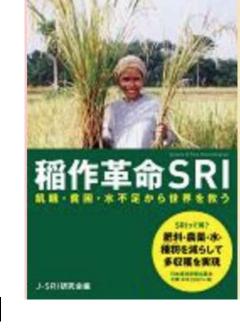
SRI-Pilipinas

SRI-Pilipinas

J-SRI研究会

- Established on April 11, 2007
- Opening Conference on July 2, 2007
- Membership: Anyone who are interested in SRI
- Number of Members: 200
- 研究者(大学、試験場)、政府(農水省、県・市町村、 JICA)、コンサルタンツ、国産機関、NPO、農業者、学 生、
- Informal Organization
 Chair, Secretary General, Executive Secretaries

J-SRI研究会の活動


- 研究会:隔月
- 現地調査
- 広報

http://www.iai.ga.a.u-tokyo.ac.jp/j-sri/index.html

http://www.iai.ga.a.u-tokyo.ac.jp/j-sri/index-e.html

- •「稲作革命SRI」 2011
- 個別研究、共同研究(国内、国外)
- 技術指導(海外)

• 次回研究会は、2月20日(水)です。

ARSIA @Johor, Malaysia

4. 技術と普及

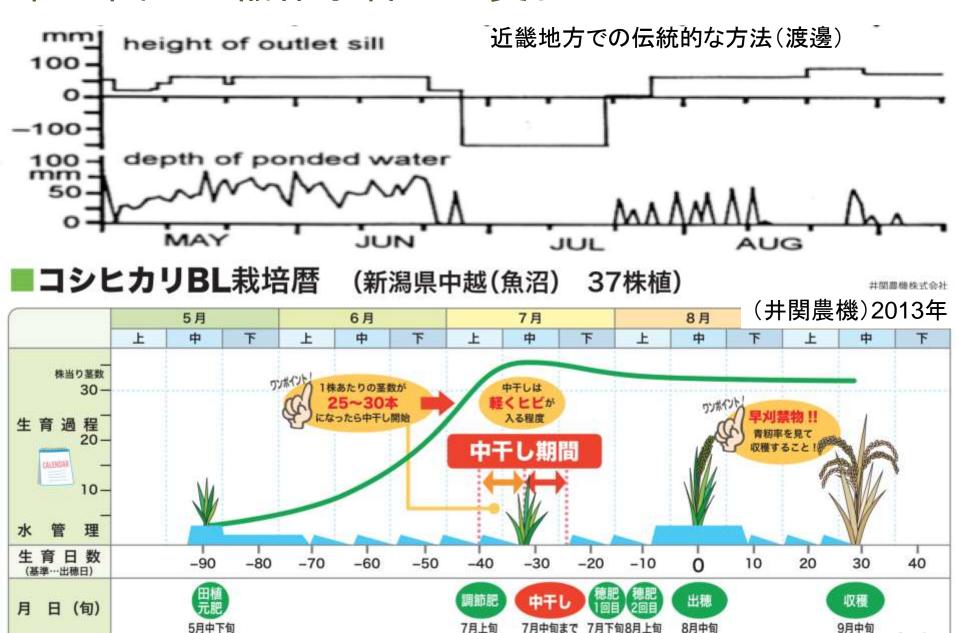
稲作における主要作業

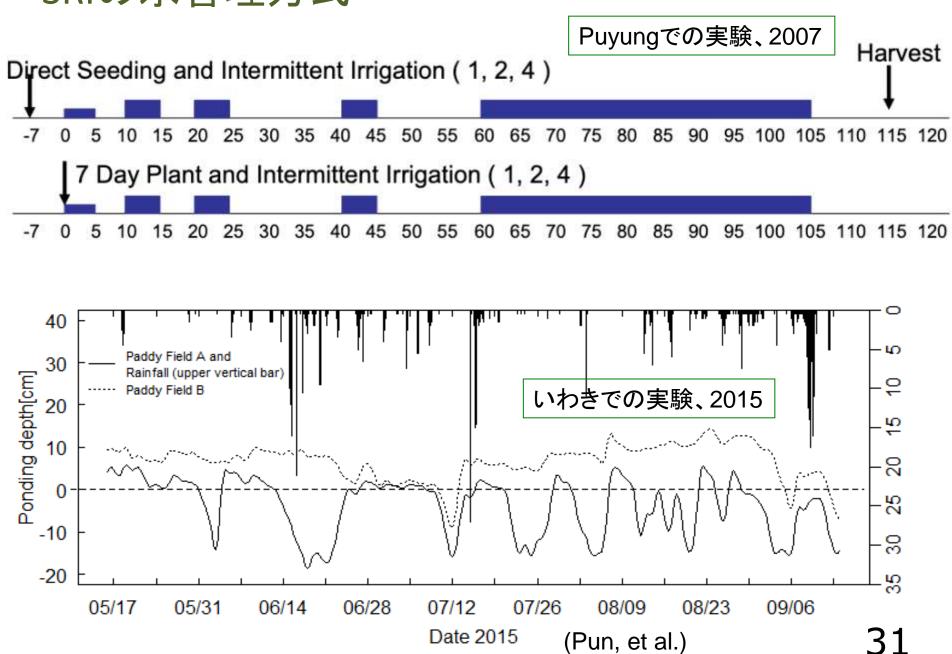
- 種子予措 塩水選、種子消毒、浸種、催芽、灌水
- 苗床づくり 箱消毒、採土、施肥、床土入
- 播種 播種、覆土、出芽、緑化、硬化
- ・ 土づくり 稲藁、堆厩肥、土壌改良資材
- 本田の準備 入水、代かき、畦塗り、均平
- 移植(あるいは直播) 葉齢、密度、本数
- 水管理 減水深の把握と調整、目標湛水深

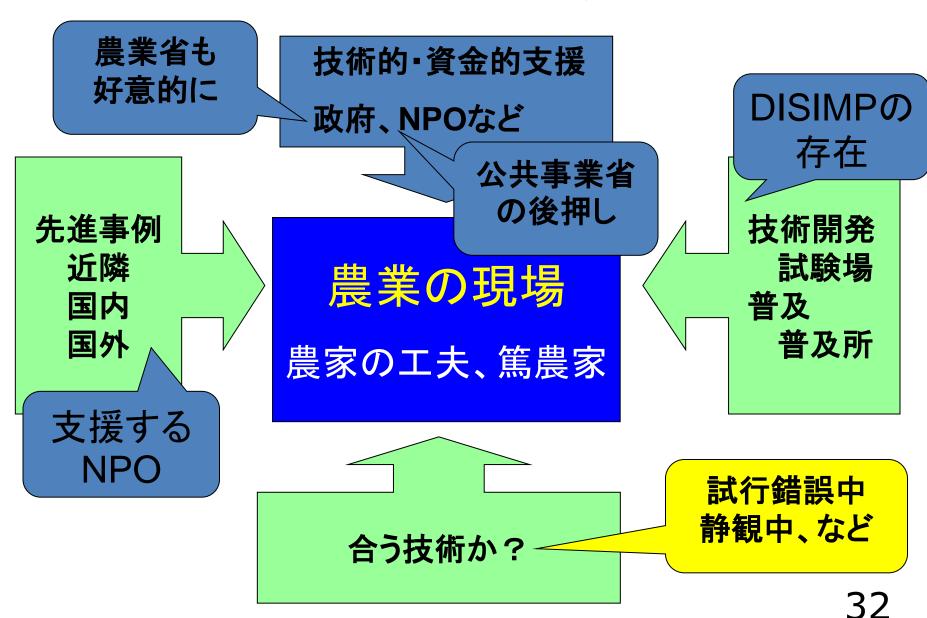
間断灌漑

- 肥培管理 元肥、穂肥 有機肥料
- 収穫・調製 刈取、乾燥、脱穀、籾摺り、小米等の除去
- 出荷

八 十 八






わが国での稲作水管理の変化

SRIの水管理方式

SRIに対するインドネシア農民の反応

灌漑設備が不十分な地域でのSRI

Target of of SRI in Cambodia

Activity	Traditional Method	SRIMethod	12の目標
Plant and germinate	Plant densely in seed bed	Plant sparsely (5-10% of traditional method)	苗床:種籾は少なめ
Water in seed bed	Continuously flooded	Minimal water – just keep moist	最小限の灌水
Time to transplant	One month or more after planting	Less than 15 days after planting	移植:若い苗(-15日)
Cut tops of seedlings	Yes	No	葉を切らない
Care in extracting seedling for planting	Shake dirt off roots - results in root damage	Carefully remove seedling – avoid root damage	苗代から丁寧に抜く
Depth of water at transplant	~10 cm	1-2 cm	移植時は浅水1-2cm
How many seed- lings?	~20 weak and strong plants	1 or 2 only vigorous seed- lings	元気な苗を1-2本 浅く植える
Planting depth	~10 cm	Place lightly on surface	及く値んる まっすぐ20cmおき
Arrangement of plants	Random, close together	Straight rows about 20 cm apart	
Weeding	Late, infrequent and irregular	Early and often to improve soil aeration	除草:早め、多数回
Fertilization	Farmyard manure and com- mercial fertilizer	Liquid or solid compost	有機肥料
Insecticide	Yes	No	殺虫剤不可

33

12目標の理解と取り入れ過程

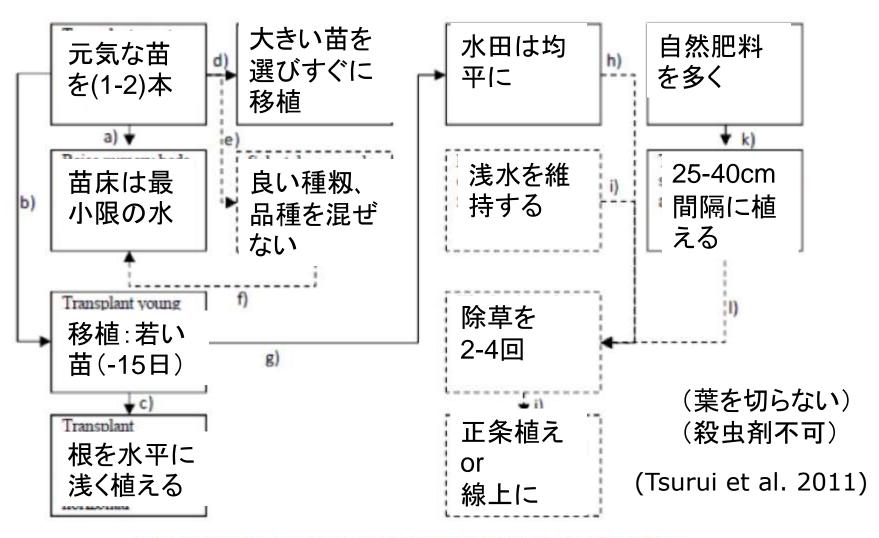


Fig. 4 Typical process of introducing SRI principles

5. 我々は何をなすべきか

- 課題と改善案
- 南アジアでのSRI
- 日本でのSRI
- SRIの必要性

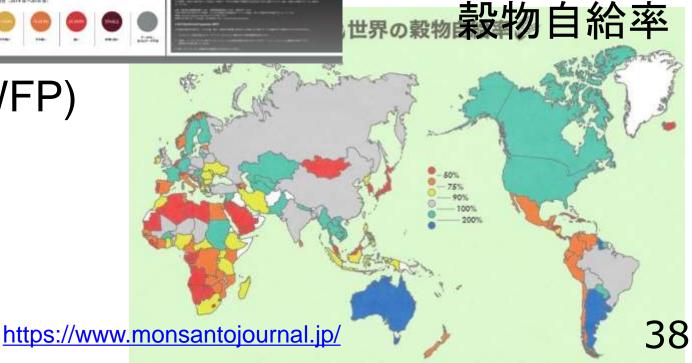
SRIの課題と改善案

- ・ 増収への疑問 →従前の条件による
- ・ 1枚の水田の中での不均一性 →均平が有効
- 1本植えへの不安 →2本でよい
- なぜ普及しないか ←やったことがない、心配。
- なぜ継続しないか ←支援が切れると元に戻る。
- ・灌漑施設整備によるSRIの安定的実施 (わが国において)
- ・ 大区画水田での実践 →中区画までは行ける
- ・ 農作業の機械化 →とくに除草

SRIの今後

カンボジア、インドネシア、ベトナム、インド、ラオス等々では、重要な研究であり実践である。解明すべき課題も多い **1**ままりの日本では不要な研究か?

- ①日本の稲作技術の総合力を持って取り組む ことで、国際協力、食料増産に寄与できる。
- ②飼料米、バイオフューエル等の他用途需要 に答える。
- ③低炭素で強いイネが育つことはよいこと。
- ④地球環境に優しい稲作。


途上国で灌漑整備を進める。

①CDM (クリーン開発メカニズム) を利用して灌漑整備。→容易に確実にSRIに取り組める。

世界は局所的に飢えている。

飢餓状況(WFP)

各国のコメの単収(もみ重)

左右は対応していません!

Production Top 15 countries, 2014

- Bangladesh
- Brazil
- Cambodia
- China
- India
- Indonesia
- Japan
- Korea
- Myanmar
- Nigeria
- Pakistan
- Philippines
- Thailand
- USA
- Viet Nam

- 8.49 t/ha
- **6.91**
- **6.82**
- **6.70**
- **5.75**
- **5.20**
- **5.13**
- 4.62
- 4.56 世界平均
- 4.00
- **3.89**
- **3.58**
- **3.26**
- **3.06**
- **2.42**
- **2.18**

まとめ:SRIの課題

- 増収(減収しない)を、確実に
- 1枚の水田の中での不均一性の克服
- ・ 農作業の機械化・・・とくに除草
- 理解と採用・・・各地域に合った方式
- 農法についての誤解を解く
- 継続性 • 適切なサポート
- SRI稲の強さ
- 各品種への適用
- 灌漑施設整備
- 地球環境に優しい