10 April 2015 Trans-disciplinary approach

Wide knowledge is required in the domestic and global fields
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IPADS Development Studies Xxample (rea Case)

Terrestrial Environment (1) * In fche Eastern Savanna o.f Colombia (Llanos
Orientales), large-scale rice-pasture system was
introduced and the productivity has been raised
impressively. But in 1995, an uncommon symptom
of the disease of rice plant was discovered. It looked
like a virus disease. What action should Rice
Program at CIAT take, as the International Institute

Global climate, Light, Atmosphere, Geology, and
Chemical environment

Department of Global Agricultural Sciences
Laboratory of Development Studies

International Program in Agricultural Development Studies (IPADS) reSpOﬂSib'e for rice researches of whole Latin
Kensuke OKADA America? What is the role each scientist should take
2kokada@mail.ecc.u-tokyo.ac.jp if the program had following scientists of different
experts.

Trans-disciplinary approach

Elements of terrestrial environment

Wide knowledge is required in the domestic and global fields . . .
surrounding biological creatures

1. Plant pathologist

2. Rice breeder * Light
3. Agricultural economist, Household economics specialist * Water
4. Agronomist (specialist for production technologies) * Gas

5. National extension services ¢ Soil

* lon, elements
One cannot cover all the disciplines, but should have basic .
knowledge to understand and appreciate other specialists’
opinions to be able to actively participate in the discussion.

Organic matter

Light environment : Cyclic period of solar activity and Radiation energy
average temperature in the northern hemisphere
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Fig. 6.1 Spectral distribution of black body radiation as
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Light absorption
by atmosphere
and various
gasses
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Fig. 6.5 Absorption spectra of normal air and various component gases.
(After Fleagle & Businger 1980.) Note the PAR band in the atmospheric
spectrum at 0.3 to 0.7 pm and how the width of the atmospheric “windows"
toinfrared at 3 to 4 and 8 to 12 pm are limited by the absorption bands for  connor et al. 2011

COy. “Crop Ecology”

Daily and seasonal fluctuation of irradiance
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Figure 1.1 Receipts of total solar radiation on three cloudless days at Rothamsted in Central
England. The numbers indicate the progression of each day in hours from right to left (from
Monteith and Unsworth 1990).

(Hay and Porter 2006 “The Physiology of Crop Yield”)

Fluctuation of solar radiation

1000 (Hay and Porter 2006 “The Physiology of Crop Yield”)
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Daily records of maximum irradiance and the total quantity of

incident solar radiation (0.35 — 2.5 um) over two growing seasons in

the north-west of England (from Hay 1985).
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(Urano et al 2009 Biological and
Environmental Climatology 1p.99)

1. Irradiance (Q) con

I=1I,e*
0
1, : irradiance above the canopy
1 : irradiance at a point in the canopy above
which there is a leaf area index of L
k : extinction coefficient I 0
(Monsi and Saeki’s equation)
(—Bouguer-Lambert-Beer Law)




Solution of the Monsi and Saeki
equation (a)
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anufl!lay and Porter 2006 “The Physiology of Crop Yield”)

Micro-climate in plant canopy

Net CO.
radiation

Temperature Wind
speed

Day Day. Might Day Night Day
= N%
3 100 g -----n--f =05 =y e e =
=
e 80
5 60
B
8 40
£ 20
[ ] L
g 9 S T . S M I PR S
£ L] 400 350 360 370 380390 -3 0 +3 0 500 0

Net radiation CO.

R Temperature  Wind speed  N%
wm?) (pmol 1)

(daily mean +3°C)  (ms)

Figure 4.13 Generalised profiles of leaf area index (1) and % of above-ground nitrogen (TaN)
in different leaf strata of a wheat crop at maximum L. Interception of incident radiation during
the day in relation to L is indicated. The profiles of CO,, temperature and wind speed are
shown for day and night situations and the direction of the CO, and radiation fluxes are

indicated (after Lawlor 2001). (Hay and Porter 2006 “The Physiology of Crop Yield”)

(Photo by K. Okada)

(Photo by K. Okada)

Roles of atmospheric gasses

* CO, : Photosynthesis

* O, :Respiration

* N, : Nitrogen fixation

* CH,, NOx: Greenhouse effect gas
* Ozone (0,)

Gas environment:
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Increase of atmospheric CO, concentration
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Global warming

+10

SRTFE2(C)

0 —— .
1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1950 2000 2010
&

B6-7 R OFEFL KR O EL L (1891~2007 £)
WSS 7B EOVEITROVER (FEM LD ERLTVS. ARETFEDS
ERMTIELRL, MM TEEORIOHOEIRY LTERLELDTHS. P
R 19712000 4.0 30 £ PR, R8T SURZMEIM L K — + 2007,
2008) (Urano et al 2009 Biological and

Environmental Climatology |)

Changes of temperature,

= concentrations of CO,
£ and methane since
s _ 160,00 years ago
£ [l estimated from ice
. ", Bl samples from south pole
WY oo 2
1990 7 £
COs A " H

€O, Conc.[ppmy]
I w
EEEE
=
o
%9
M.,
EEEE

2
1)
H

40 &0 120 160
Previous years (1000 yr unit)|
B2.44 WKy L HE S R IET £ & O, CO, il i,
APl (IPCCL#—1 5N

Moniji et al 1997
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Environmental
Science”

A UM (em?)
10° 10" -qu? ]0'3

Ozone layer

120
Termosphere #48 J0.0001
h
10r <000
Temperature
RN 4 "MERE
001

-1 ¢
Mesosphere M [
01

A (km
BE(mb}

Troposphere #3i8
ol L (Urano et al 2009 Biological and
100 200 300 400 Environmental Climatology )

BEK)

H2-14 AKOEN, BE, AV BEO IR
(O - BiligaE, 1990)

Vertical distribution of temperature and

Ozone hole in south pole

ozone
100
an Termosphere 7 000 Ort by () —0+0
O+ 0+ M—0u+ M [fl2r$i)
80 Jl rmERE Joor o020,
70 Mesosphere
{01 w
60 = =]
- L =
e s e 1 &
XU 40 .
k=3 0 ~_ A stratosphere o 10
20 - BRG]
wHE T
oL - 1000
———— -
0 100 20 220 260 300
ure K1 Moniji et al 1997 “Cli i
Ozone pressure _ o hPa] Temperature K En?/?rjtljﬁmaental Scier:?ea"nc

R S Al A b — b, 1979 () IR A MBS L v, 19958 () 12
BEL AL TvE CARIF, 1997,

Moniji et al 1997 “Climatic
Environmental Science”




5_
g 0 — L XTI
11:* t11y
g
g-m-
£ st
&
S 20

| 1 1 1 | 1 1 1
B80S 60S 405 20S O 20N 40N 60N 80N
Longitude
E6-8 fikElblic X HMERHOL Y 2 ROEIAELYIN
HIZ 10 T 2O 2R (19792000 FE) 0 6, FFMEH, KRERT L0
EEERELTHRELEZESR(% 105)ERT. BRI OS%EHINTHL. (R

BT D BBRRLE—F 2005, 2005) (Urano et al 20097 Biological and
Environmental Climatology |)
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Effect of ozone on plants

Ozone effect on Chinese
spinach
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4. Effect of ozone on yield of rice varieties

Carbon isotopes

W abundance

11C 20.3 min
12C  Stable 98.9 %
13C  Stable 1.1% |

14C 5704 yr 101°% @ Fumccss:

Primary cosmic ray produces secondary cosmic ray at the stratosphere.
14C is produced by the interaction between neutron in the secondary
ray and nitrogen, and immediately bound with oxygen to produce 14CO,
and diffuse into the atmosphere. Natural decay of 14C is approximately
balanced with the supply from stratosphere. -*C Dating

(Kigoshi 1978 rMeasunng Ages])

The plants fix lighter carbon more rapidly, and the plants contain less 13C,
A3Cis -27%o for C, plants and -12%o for C, plants. (carbon discrimination)

Nitrogen isotope

|____[Halflife______|Natural abundance

13N 9.965 min
14N Stable 99.64 %
15N Stable 0.36 %

6%°N is used to estimate atmospheric nitrogen fixation
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Range of longitude for major crops in northern

hemisphere
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Moniji et al 1997 “Climatic
Environmental Science”
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Rapeseed canola
Linseed  ©

(Yamamoto et
al. 1998
“Agricultural
geography”)

(Yamamoto et al. 1998
“Agricultural geography”)

High photosynthesis at cooler climate

12 Months 8 Months 4 Months
Growing Season Growing Season Growing Season
(Mar. ~ Oct.) (May ~ Aug.)
Cool-temperate
Temperate
Mediterranean
Savanna

Tropical rainforest|
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B 3. 5 Daily photosynthesis (g/m2/day) at 5 climatic zone

LLE

Chang, “The agrieuitural potential of the humid tropics’, Geographicel Review, 1985,
8, pp.353 - 325,

(Yamamoto et al. 1998

“Agricultural geography”)

ATMOSPHERIC CIRCULATION :
CLIMATE AND WEATHER

Koeppen-Geiger climate map
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High and low pressure area (July)
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Monji et al 1997 “Climatic
Environmental Science”
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High and low pressure area (January)
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Examples of extreme weather in the world (1)
Semi-Arid Tropics

(1) Tropics
(2) Rainy season ------ 2 to 7 months

(mean monthly rainfall > mean potential evapotranspiration)

2 to 4.5 months : dry SAT
(thorn Savannah vegetation)

4.5 to 7 months : wet-dry SAT
(dry Savanna vegetation)

[after Troll (1965)]
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« Semi-arid Tropics

Seasonal
changes of
vegetation in
the Sahel

(Niger)

Niger, a country of the lowest GDP per capita

Sowing of pearl millet in a sandy soil of Niger at the beginning of rainy season




Young seedlings of pearl millet, in Niger

(Photo by K. Okada) (Photo by K. Okada)

Field of pearl millet

Fallow land

(Photo'by K. Okada) (Photo by K. Okada)l




Harvested head of
Pearl millet (Niger)

Examples of special environment(2)
Tropical highlands

[Temperature ('3 Precipitation (an)
£ - 1000

00 =1 Precipitation (Tokyo)

30 281 — Min temp (Cali)

a0 | = Maxtemp (Cali)

— Min temp (Tokyo)
Max temp (Tokyo)

Experience
from Cali,
Colombia in SA
(CIAT HQ)

‘A IH 3H 4H SA 6B TR RA $H 10B 1A 128

http://www2m.biglobe.ne.jp/%257EZenTech/world/kion/Colombia/Colombia_Cali.htm

Store house (Niger)

igure 5. Millet growth around this village near Niamey reflects the underlying soil
rtility gradient, which is highest close to human habitation.

Tropical highlands in the world and its characteristics

Andean
region

* East Africa
(Ethiopia,
Kenya)

* Papua New
Nightande ..,.._.-._:c:’“t:e\- S Guinea,

7- “C:) ¥ Candy, Sri
) Lanka

B8, 9903 S (I ZOLLE BT, KALADSML T SLGER,  (Yamamoto et al. 1996)

[Fig 8. Areas of the workd above 2500m(Pawson & Jest, 1978,

The temperature is constant through out the year

The temperature is fixed for different altitude

Life in the highland (agriculture, pasture), Shifting cultivation using different altitude

Vegetable and flower production year round using cool but stable climate, tea and coffee (export)
Issues for sustainable agriculture (soil erosion, drain of young ages)
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ex. Land utilization in Equador
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Interaction between atmosphere and oceans
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Southern Oscillation Index

SOI =(BP at Tahichi (East)) - (BP at Darwin, Australia (West)) %
BP : Barometric Pressure
Negative SOI = El Nino = Less rainfall in Indonesia, etc. &= "7

Urano et al 2009 "Biological
and Environmental
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(Urano et al. 2009)

Abnormal Weather
in El Nino year

Maximu El Nino
1(1997-1998)

= Drought at Tropical
Rain forest in
Indonesia and Brasil,
arge forest fire

Flood in the dry area
in Peru and East Africa.
__{ Extraordinary warm
| |winter in Japan.
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Indian Ocean DIpOle Application of climate predictions to agriculture

Positive Dipole Mode Negative Dipole Mode

ey “Ariificial Earth” Offers Seatonal
K Climate Predictions & Year in Advance

Subtropical dipole moﬂew Rt W wres o O

When the Trade Wind of the South-East direction
is strengthened, warm water volume at the east
part of Indian Ocean shifts to west. And then the
| upwell from the deeper sea and the evaporation
at the surface is strengthened.

Southern Indian Ocean diploe affects the
weather pattern for South Africa

This is the positive dipole mode. As the result,

the rainfall at the Eastern Africa is increased, but . Knowing when the rainy season starts for

that In Indonesia decreased. http://www.diginfo.tv/v/12-0010-a- the next yearnning period of the rainy
(GBS #E A IAMSTEC) en.php#.U1nuATzAsOM.mailto season

—>South Atlantic Ocean Dipole

. Factors which decide the character of the soil
Below-ground environment @Mother rock

Legend

Geology
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lgneous rocks (N A

Felsic Intermeadite | Mafic

Ultra mafic
Acid rock
BitE |iEE

Basic rock
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volcanic rock rhyolite andesite basalt kimberlite
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plutonic rock granite diorite gabbro peridotite
A ftEE R g =]

Two maijor volcanic belts in the world

MG_“

Alpide belt

Distribution
of Andisols
in Japan

]
Green : Allophanic
Red : Non-allophanic
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Cause of natural soil acidification in humid climate

Rain H* H;_r
(pH=5.6) L H
due to CO, H W
H* AR+
H" ca 3*‘% AP
a " H Al I
Mg H H\\
z A\
‘ L m
Ca H
e a Ho Wl

Leaching of cations
to sub soil or under water

Soil acidity problem

(1) Cause of natural soil acidification in humid climate

1. Theoretically rain water is acid (pH=5.6) because it is
saturated with CO, in the atmosphere.

2. In the region where the rainfall exceeds evaporation, the
proton (H*) in the water displaces the cations on the
surface of the soil colloids.

3. Then the cations are leached.

4. The remaining H* destroyed part of the clay mineral
which consists of Al-Si-Fe and liberate them.

5. AI’*, due to its selective adsorption, displaces H* and
become the major exchangeable cation in the acid soils.

6. If the acidification proceeds, the clay minerals are further
destroyed and more Al3* will exists in the soil solution.

Structure of clay minerals (eg. kaolinite)

Kaolinite
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Additional soil acidification mechanisms

+  Ammonium fertilizer application and organic
matter decomposition acidify the soils
through nitrification

NH,*+ 20, —» NO; + 2H*+ H,0O

» Acid rain caused by petroleum combustion
NO, + H,O0 — HNO, (nitric acid)
SO, +H,0 — H,SO, (sulfuric acid)

« Uptake of cations (Ca2*, Mg?*, K) by plants
and N,-fixation produces H*

Acid Soils in the World

Percentage of acid soils, in
the land (agriculture possible)
in the world

Proble-

matic

Acid Soils Regional Distribution of
(11%) Severe Acid Soils

Dynamic equilibrium of soil solution

Absorption
by plants
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(Okajima 1989 “Structure and
Function of Soil”)
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Root system absorption zone vs. Root surface

absorption zone
(Okajima 2001 in “Plant Nutrient Acquisition”)

Fig. 4, Root system sorption zone for mobile
nutrients and root surface zone for immo-
bile nutrients (modified from Bray 1954)

Root surface sorption zone
Root system sorption zone

P is absorbed at the rhizosphere
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(Russel 1981
“Crop Root System
and Soil”)
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hizosphere, Rrhizoplane

Mucigel (m)
contains many soil
particles (arrow)

& and it covers the
surface of root hair

(r)
X 11000

(Grieves and
Darbyshire 1972)

Organic environment of rhizosphere

Root exudates

(Russel 1981 “Crop Root System
Composition of root exudates and Soil”)

Carbohydrate Glucose, Fructose, Sucrose, Xylose, Maltose,
Rhamnose, Arabinose, Raffinose, Oligosaccharoides
Leucine/Isoleucine, Valine, y-amino lactic acid,
Glutamine, a-alanine, Asparagine, Serine, Glutamic
acid, Aspartic acid, Cystine/Cystein, Glycine, Phenyl
alanine, Threonine, Tylocine, Proline, Methyonine,
Tryptphane, Homoserine, B-alanine, Arginine

Amino acids

Organic acids  Tartaric acid, Oxalic acid, Citric acid, Malic acid, Acetic acid, Propione acid,
Lactic acid, Valeric acid, Succinic acid, Fumalic acid, Glycol acid

Enzymes Phosphatase, Invertase, Amylase, Protease,
Polygalacturonase

Others Biotine, Thiamine, Pantoteic acid, Niacin, Choline, Inositol,
Pyridoxine (Vitamin B6), p-amino salicylic acid, n-methil nicotic
acid

plant roots

Diffusive organic matter (hatched area) :
even at the base of the roots

Non-diffusive organic matter :
Mainly from the root tip and the region
where branch roots emerge

(Russel 1981 “Crop Root System and Soil”)

- T o P # ( Pis safivim, SR M q i T
B3-4 xt.;la;l -.'ﬁ O ( swsteatipden R i eteoc) Many unidentified compounds which inhibit the activities of
BB R (Russel 1981 “Crop Root System and Soil”) fungi, bacteria and nematode
Hhm(eon) ganic matter exudatio .
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H at the root surface (loamy soil)
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s
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o
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(Okajima 1989 “Structure
and Function of Soil”)
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N

farmdai-etal. 2001 in “Plant Nutrient Acquisition”)
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Topics covered in this lecture

1. Multi-dimensional understand of above- and below-ground

environments

2. Hints to start thinking about abnormal weather and climate

change

3. Understanding of the climate and geography unfamiliar for

Japanese

4. The uniqueness of belowground environments for plants

« [Pick up one environmental factor that you are interested in,

and summarize the content of the seminar regarding the
factor ] (400 letters in Japanese or ca. 200 words in English)

« Deadline : by the midnight of 15 April 2015 (Wed)

16



