Fig. 1. Atmospheric CO, has been increasing.
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Fig. 2. Increase (%) of crop yields by a 200 ppm
increase of [CO,].
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Fig. 4a. The earth’s carbon cycle:
without human disturbances

Fig. 4b. The earth’s carbon cycle:
with human disturbances
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b) The human perturbation
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Fig. 3. Predicted effects of temperature
rise and CO, increase on rice yield:
model estimates

TABLE 2
Mean Predicted Changes (%) in Potential Yields Under the ‘Fixed” Temperature and CO,
Scenarios. Temperature Increments are Above the Current Mean Temperatures at Each Site.
Changes are Averaged Across all Sites and all Available Years

Temperature increments

@;\t +0°C +1°C +2C +4°C
ORYZAI >
40 ppm 0.0 =73 —-14.2 -31.0

1.5 x CO, 233 143 5.6 —15.7

2 x CO, 36.4 26.4 16.8 -7.0
SIMRIW

340 ppm 0.0 —4.6 -9.8 —26.2

1.5 x CO, 13.0 7.8 1.9 —-16.6

2 x CO, 239 18.2 117 -85

Matthews et al. (1997)

Fig. 5. Photosynthesis: energy capture and CO, fixation
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Fig. 8. A ‘cartoon’ of photosynthesis.

'

g’coﬂm

(
(o2 :(4

Cox

v &= Mok iktos; o>

wteglaa ™ A a

Fig. 9.
Extra
pathways
for higher
efficiency
of carbon
fixation by
Rubisco.

Source: Ref. 2.

Rubisco oxygenates 2 out of 10 molecules of RuBP, a process
called photorespiration, which lowers the already low efficiency
of carbon fixation by Rubisco and spends extra. To fix this
shortcoming of Rubisco, some plant species have invented extra
pathways to condense COi concentration at Rubisco.
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Fig. 10. A “cartoon’ of C, photosynthesis.
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